Spaces:
Running
Running
import gradio as gr | |
import subprocess | |
import torch | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() | |
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) | |
def generate_captions(image): | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) | |
captions = [] | |
for i in range(3): | |
generated_ids = florence_model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=True, | |
temperature=0.7 + i * 0.1, | |
num_beams=3 | |
) | |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = florence_processor.post_process_generation( | |
generated_text, | |
task="<MORE_DETAILED_CAPTION>", | |
image_size=(image.width, image.height) | |
) | |
prompt = parsed_answer["<MORE_DETAILED_CAPTION>"] | |
captions.append(prompt) | |
print(f"\n\nGeneration {i+1} completed!:" + prompt) | |
return "\n\n".join([f"Caption {i+1}: {caption}" for i, caption in enumerate(captions)]) | |
io = gr.Interface( | |
generate_captions, | |
inputs=[gr.Image(label="Input Image")], | |
outputs=[gr.Textbox(label="Output Captions", lines=10, show_copy_button=True)] | |
) | |
io.launch(debug=True) |