File size: 5,201 Bytes
af1fa5c eb8ecc4 a0a0756 af1fa5c a0a0756 af1fa5c a0a0756 af1fa5c a0a0756 b16de67 af1fa5c a0a0756 eb8ecc4 af1fa5c eb8ecc4 af1fa5c eb8ecc4 a0a0756 eb8ecc4 107f45c af1fa5c a0a0756 af1fa5c 28bbd1a a0a0756 af1fa5c 40d109e a0a0756 40d109e fba9e95 a0a0756 40d109e a0a0756 d488842 40d109e d488842 fba9e95 d488842 5a101a3 b9a7a2e d488842 5a101a3 d488842 b9a7a2e d488842 5a101a3 d488842 5a101a3 d488842 b9a7a2e d488842 40d109e ca9e0e6 40d109e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""nl2bash metric."""
import re
import string
import datasets
import numpy as np
import evaluate
_DESCRIPTION = """
returns a score that indicates how close the bash command generated is to the actual command with a perfect score out of 1.0
"""
_KWARGS_DESCRIPTION = """
Args:
predictions: List of predicted texts.
references: List of reference texts.
cmd_weight: The weight you want to put on getting the command correct
opt_weight: The weight you want to put on getting the option correct
arg_weight: The weight you want to put on getting the arg correct
ignore_case=False,
ignore_numbers=False,
Returns:
nl2bash metric: Dictionary containing nl2bash score. Possible values are between 0.0 and 1.0, inclusive.
Examples:
>>> metric = evaluate.load("Josh98/nl2bash_m")
>>> preds = ["ls -l /home/userr", "ls -l /home/josh", "lss /home/josh some argument"]
>>> refs = [["ls -l /home/user"], ["ls -l --v /home/josh"], ["ls /home/josh"]]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results["nl2bash"], 2))
0.708
"""
_CITATION = """
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class nl2bash_m(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=[
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
}
),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
reference_urls=[],
)
def get_score(self, pred, ref):
if not pred and not ref: return 1
cor = 0
for i in range(min(len(pred), len(ref))):
if (pred[i] == ref[i]):
cor += 1
return cor/max(len(pred), len(ref))
def _compute(
self,
predictions,
references,
cmd_weight = 0.65,
opt_weight = 0.25,
arg_weight = 0.15,
ignore_case=True,
ignore_numbers=True,
):
predictions = np.asarray(predictions)
references = np.asarray(references)
if ignore_case:
predictions = np.char.lower(predictions)
references = np.char.lower(references)
if ignore_numbers:
repl_table = string.digits.maketrans("", "", string.digits)
predictions = np.char.translate(predictions, table=repl_table)
references = np.char.translate(references, table=repl_table)
final_score = 0
for pred, refs in zip(predictions, references):
best_score = 0
if len(pred) == 0 and min([len(ref) for ref in refs]) == 0:
best_score = 1
elif len(pred) == 0 or min([len(ref) for ref in refs]) == 0:
best_score = 0
else:
for ref in refs:
pred_words, ref_words = pred.split(), ref.split()
# Get the cmd of predicted and ref
cmd_corr = 1 if pred_words.pop(0)==ref_words.pop(0) else 0
# Get the option of predicted and ref
pred_option = [ x for x in pred_words if x[0] == '-']
ref_option = [ x for x in ref_words if x[0] == '-']
# Get the arguments of predicted and ref
pred_args = [ x for x in pred_words if x[0] != '-']
ref_args = [ x for x in ref_words if x[0] != '-']
# Calculate scores
cmd_score = cmd_weight * cmd_corr
opt_score = opt_weight * self.get_score(pred_option, ref_option)
arg_score = arg_weight * self.get_score(pred_args, ref_args)
score = cmd_score + opt_score + arg_score
best_score = max(best_score, score)
final_score += best_score
final_score = final_score/len(predictions)
return {"nl2bash_m": (final_score)} |