File size: 29,864 Bytes
b73cea4 528dc7c b73cea4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 |
{
"cells": [
{
"cell_type": "markdown",
"id": "3eb9d2c1",
"metadata": {},
"source": [
"## 7. Bulk prompts"
]
},
{
"cell_type": "markdown",
"id": "960b1cbf",
"metadata": {},
"source": [
"Our reusable prompting function is pretty cool. But requesting answers one by one across a big dataset could take forever. And with the Hugging Face free API, we’re likely to hit rate limits or timeouts if we send too many requests too quickly.\n",
"\n",
"One solution is to submit your requests in batches and then ask the LLM to return its responses in bulk.\n",
"\n",
"A common way to do that is to prompt the LLM to return its responses in JSON, a JavaScript data format that is easy to work with in Python.\n",
"\n",
"To try that, we start by adding the built-in json library to our imports."
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "ec94fe49",
"metadata": {},
"outputs": [],
"source": [
"import json # NEW\n",
"from rich import print\n",
"import requests\n",
"from retry import retry\n",
"import os\n",
"from huggingface_hub import InferenceClient\n",
"\n",
"api_key = os.getenv(\"HF_TOKEN\")\n",
"client = InferenceClient(\n",
" token=api_key,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "eac8a34e",
"metadata": {},
"source": [
"Next, we make a series of changes to our function to adapt it to work with a batch of inputs. Get ready. It’s a lot.\n",
"- We tweak the name of the function.\n",
"- We change our input argument to a list.\n",
"- We expand our prompt to explain that we will provide a list of team names.\n",
"- We ask the LLM to classify them individually, returning its answers in a JSON list.\n",
"- We insist on getting one answer for each input.\n",
"- We tweak our few-shot training to reflect this new approach.\n",
"- We submit our input as a single string with new lines separating each team name.\n",
"- We convert the LLM’s response from a string to a list using the `json.loads` function.\n",
"- We check that the LLM’s answers are in our list of acceptable answers with a loop through the list.\n",
"- We merge the team names and the LLM’s answers into a dictionary returned by the function."
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "70477229",
"metadata": {},
"outputs": [],
"source": [
"@retry(ValueError, tries=2, delay=2)\n",
"def classify_teams(name_list): # NEW\n",
" prompt = \"\"\"\n",
"You are an AI model trained to classify text.\n",
"\n",
"I will provide list of professional sports team names separated by new lines\n",
"\n",
"You will reply with the sports league in which they compete.\n",
"\n",
"Your responses must come from the following list:\n",
"- Major League Baseball (MLB)\n",
"- National Football League (NFL)\n",
"- National Basketball Association (NBA)\n",
"\n",
"If the team's league is not on the list, you should label them as \"Other\".\n",
"\n",
"Your answers should be returned as a flat JSON list.\n",
"\n",
"It is very important that the length of JSON list you return is exactly the same as the number of names you receive.\n",
"\n",
"If I were to submit:\n",
"\n",
"\"Los Angeles Rams\\nLos Angeles Dodgers\\nLos Angeles Lakers\\nLos Angeles Kings\"\n",
"\n",
"You should return the following:\n",
"\n",
"[\"National Football League (NFL)\", \"Major League Baseball (MLB)\", \"National Basketball Association (NBA)\", \"Other\"]\n",
"\"\"\"\n",
"\n",
" response = client.chat.completions.create(\n",
" messages=[\n",
" {\n",
" \"role\": \"system\",\n",
" \"content\": prompt,\n",
" },\n",
" ### <-- NEW \n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"Chicago Bears\\nChicago Cubs\\nChicago Bulls\\nChicago Blackhawks\",\n",
" },\n",
" {\n",
" \"role\": \"assistant\",\n",
" \"content\": '[\"National Football League (NFL)\", \"Major League Baseball (MLB)\", \"National Basketball Association (NBA)\", \"Other\"]',\n",
" },\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"\\n\".join(name_list),\n",
" }\n",
" ### --> \n",
" ],\n",
" model=\"meta-llama/Llama-3.3-70B-Instruct\",\n",
" temperature=0,\n",
" )\n",
"\n",
" answer_str = response.choices[0].message.content # NEW\n",
" answer_list = json.loads(answer_str) # NEW\n",
"\n",
" acceptable_answers = [\n",
" \"Major League Baseball (MLB)\",\n",
" \"National Football League (NFL)\",\n",
" \"National Basketball Association (NBA)\",\n",
" \"Other\",\n",
" ]\n",
" ### <-- NEW\n",
" for answer in answer_list:\n",
" if answer not in acceptable_answers:\n",
" raise ValueError(f\"{answer} not in list of acceptable answers\")\n",
" return dict(zip(name_list, answer_list))\n",
" ### -->"
]
},
{
"cell_type": "markdown",
"id": "4a0909ed",
"metadata": {},
"source": [
"Try that with our team list. And you’ll see that it works with only a single API call. The same technique will work for a batch of any size."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "2bb71639",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Minnesota Twins': 'Major League Baseball (MLB)',\n",
" 'Minnesota Vikings': 'National Football League (NFL)',\n",
" 'Minnesota Timberwolves': 'National Basketball Association (NBA)'}"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"team_list = [\"Minnesota Twins\", \"Minnesota Vikings\", \"Minnesota Timberwolves\"]\n",
"classify_teams(team_list)"
]
},
{
"cell_type": "markdown",
"id": "b6815a5c",
"metadata": {},
"source": [
"Though, as you batches get bigger, one common problem is that the number of outputs from the LLM can fail to match the number of inputs you provide. This problem may lessen as LLMs improve, but for now it’s a good idea to limit to batches to a few dozen inputs and to verify that you’re getting the right number back."
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "8295afc9",
"metadata": {},
"outputs": [],
"source": [
"@retry(ValueError, tries=2, delay=2)\n",
"def classify_teams(name_list):\n",
" prompt = \"\"\"\n",
"You are an AI model trained to classify text.\n",
"\n",
"I will provide list of professional sports team names separated by new lines\n",
"\n",
"You will reply with the sports league in which they compete.\n",
"\n",
"Your responses must come from the following list:\n",
"- Major League Baseball (MLB)\n",
"- National Football League (NFL)\n",
"- National Basketball Association (NBA)\n",
"\n",
"If the team's league is not on the list, you should label them as \"Other\".\n",
"\n",
"Your answers should be returned as a flat JSON list.\n",
"\n",
"It is very important that the length of JSON list you return is exactly the same as the number of names you receive.\n",
"\n",
"If I were to submit:\n",
"\n",
"\"Los Angeles Rams\\nLos Angeles Dodgers\\nLos Angeles Lakers\\nLos Angeles Kings\"\n",
"\n",
"You should return the following:\n",
"\n",
"[\"National Football League (NFL)\", \"Major League Baseball (MLB)\", \"National Basketball Association (NBA)\", \"Other\"]\n",
"\"\"\"\n",
"\n",
" response = client.chat.completions.create(\n",
" messages=[\n",
" {\n",
" \"role\": \"system\",\n",
" \"content\": prompt,\n",
" },\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"Chicago Bears,Chicago Cubs,Chicago Bulls,Chicago Blackhawks\",\n",
" },\n",
" {\n",
" \"role\": \"assistant\",\n",
" \"content\": '[\"National Football League (NFL)\", \"Major League Baseball (MLB)\", \"National Basketball Association (NBA)\", \"Other\"]',\n",
" },\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"\\n\".join(name_list),\n",
" }\n",
" ],\n",
" model=\"meta-llama/Llama-3.3-70B-Instruct\",\n",
" temperature=0,\n",
" )\n",
"\n",
" answer_str = response.choices[0].message.content\n",
" answer_list = json.loads(answer_str)\n",
"\n",
" acceptable_answers = [\n",
" \"Major League Baseball (MLB)\",\n",
" \"National Football League (NFL)\",\n",
" \"National Basketball Association (NBA)\",\n",
" \"Other\",\n",
" ]\n",
" for answer in answer_list:\n",
" if answer not in acceptable_answers:\n",
" raise ValueError(f\"{answer} not in list of acceptable answers\")\n",
"\n",
" ### <-- NEW\n",
" try:\n",
" assert len(name_list) == len(answer_list)\n",
" except AssertionError:\n",
" raise ValueError(f\"Number of outputs ({len(name_list)}) does not equal the number of inputs ({len(answer_list)})\")\n",
" ### -->\n",
" return dict(zip(name_list, answer_list))"
]
},
{
"cell_type": "markdown",
"id": "587604c0",
"metadata": {},
"source": [
"Okay. Naming sports teams is a cute trick, but what about something hard? And whatever happened to that George Santos idea?\n",
"\n",
"We’ll tackle that by pulling in our example dataset using `pandas`, a popular data manipulation library in Python.\n",
"\n",
"First, we need to install it. Back to our installation cell."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ff5e26c",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"%pip install huggingface_hub rich ipywidgets retry pandas"
]
},
{
"cell_type": "markdown",
"id": "295346d4",
"metadata": {},
"source": [
"Then import it."
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "c6d289d7",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from rich import print\n",
"import requests\n",
"from retry import retry\n",
"import pandas as pd # NEW"
]
},
{
"cell_type": "markdown",
"id": "1ee5cf9f",
"metadata": {},
"source": [
"Now we’re ready to load the California expenditures data prepared for the class. It contains the distinct list of all vendors listed as payees in itemized receipts attached to disclosure filings."
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "3ae2b2fc",
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(\"https://raw.githubusercontent.com/palewire/first-llm-classifier/refs/heads/main/_notebooks/Form460ScheduleESubItem.csv\")"
]
},
{
"cell_type": "markdown",
"id": "bca7002b",
"metadata": {},
"source": [
"Have a look at a random sample to get a taste of what’s in there."
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "0aa44f42",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>payee</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>5822</th>\n",
" <td>GRAND HYATT SAN FRANCISCO</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8765</th>\n",
" <td>LIZ FIGUEROA FOR LT. GOVERNOR</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2027</th>\n",
" <td>CA STATE UNIVERSITY NORTHRIDGE YOUNG DEMOCRATS</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1371</th>\n",
" <td>BEN FRANKLIN CRAFTS</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9033</th>\n",
" <td>LYNWOOD FOR BETTER HEALTHCARE, SPONSORED BY SE...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11720</th>\n",
" <td>QUINTESSA</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7983</th>\n",
" <td>KOST FM</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4324</th>\n",
" <td>DUNKIN DONUTS</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2434</th>\n",
" <td>CARDENAS MARKETS, INC.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5738</th>\n",
" <td>GOLDEN PALACE</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" payee\n",
"5822 GRAND HYATT SAN FRANCISCO\n",
"8765 LIZ FIGUEROA FOR LT. GOVERNOR\n",
"2027 CA STATE UNIVERSITY NORTHRIDGE YOUNG DEMOCRATS\n",
"1371 BEN FRANKLIN CRAFTS\n",
"9033 LYNWOOD FOR BETTER HEALTHCARE, SPONSORED BY SE...\n",
"11720 QUINTESSA\n",
"7983 KOST FM\n",
"4324 DUNKIN DONUTS\n",
"2434 CARDENAS MARKETS, INC.\n",
"5738 GOLDEN PALACE"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.sample(10)"
]
},
{
"cell_type": "markdown",
"id": "9fe1e695",
"metadata": {},
"source": [
"Now let’s adapt what we have to fit. Instead of asking for a sports league back, we will ask the LLM to classify each payee as a restaurant, bar, hotel or other establishment."
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "970c5161",
"metadata": {},
"outputs": [],
"source": [
"@retry(ValueError, tries=2, delay=2)\n",
"### <-- NEW\n",
"def classify_payees(name_list):\n",
" prompt = \"\"\"You are an AI model trained to categorize businesses based on their names.\n",
"\n",
"You will be given a list of business names, each separated by a new line.\n",
"\n",
"Your task is to analyze each name and classify it into one of the following categories: Restaurant, Bar, Hotel, or Other.\n",
"\n",
"It is extremely critical that there is a corresponding category output for each business name provided as an input.\n",
"\n",
"If a business does not clearly fall into Restaurant, Bar, or Hotel categories, you should classify it as \"Other\".\n",
"\n",
"Even if the type of business is not immediately clear from the name, it is essential that you provide your best guess based on the information available to you. If you can't make a good guess, classify it as Other.\n",
"\n",
"For example, if given the following input:\n",
"\n",
"\"Intercontinental Hotel\\nPizza Hut\\nCheers\\nWelsh's Family Restaurant\\nKTLA\\nDirect Mailing\"\n",
"\n",
"Your output should be a JSON list in the following format:\n",
"\n",
"[\"Hotel\", \"Restaurant\", \"Bar\", \"Restaurant\", \"Other\", \"Other\"]\n",
"\n",
"This means that you have classified \"Intercontinental Hotel\" as a Hotel, \"Pizza Hut\" as a Restaurant, \"Cheers\" as a Bar, \"Welsh's Family Restaurant\" as a Restaurant, and both \"KTLA\" and \"Direct Mailing\" as Other.\n",
"\n",
"Ensure that the number of classifications in your output matches the number of business names in the input. It is very important that the length of JSON list you return is exactly the same as the number of business names youyou receive.\n",
"\"\"\"\n",
"### -->\n",
" response = client.chat.completions.create(\n",
" messages=[\n",
" {\n",
" \"role\": \"system\",\n",
" \"content\": prompt,\n",
" },\n",
" ### <-- NEW\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"Intercontinental Hotel\\nPizza Hut\\nCheers\\nWelsh's Family Restaurant\\nKTLA\\nDirect Mailing\",\n",
" },\n",
" {\n",
" \"role\": \"assistant\",\n",
" \"content\": '[\"Hotel\", \"Restaurant\", \"Bar\", \"Restaurant\", \"Other\", \"Other\"]',\n",
" },\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"Subway Sandwiches\\nRuth Chris Steakhouse\\nPolitical Consulting Co\\nThe Lamb's Club\",\n",
" },\n",
" {\n",
" \"role\": \"assistant\",\n",
" \"content\": '[\"Restaurant\", \"Restaurant\", \"Other\", \"Bar\"]',\n",
" },\n",
" ### -->\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"\\n\".join(name_list),\n",
" }\n",
" ],\n",
" model=\"meta-llama/Llama-3.3-70B-Instruct\",\n",
" temperature=0,\n",
" )\n",
"\n",
" answer_str = response.choices[0].message.content\n",
" answer_list = json.loads(answer_str)\n",
"\n",
" ### <-- NEW \n",
" acceptable_answers = [\n",
" \"Restaurant\",\n",
" \"Bar\",\n",
" \"Hotel\",\n",
" \"Other\",\n",
" ] \n",
" ### -->\n",
" \n",
" for answer in answer_list:\n",
" if answer not in acceptable_answers:\n",
" raise ValueError(f\"{answer} not in list of acceptable answers\")\n",
"\n",
" try:\n",
" assert len(name_list) == len(answer_list)\n",
" except AssertionError:\n",
" raise ValueError(f\"Number of outputs ({len(name_list)}) does not equal the number of inputs ({len(answer_list)})\")\n",
"\n",
" return dict(zip(name_list, answer_list))"
]
},
{
"cell_type": "markdown",
"id": "bf9b69a0",
"metadata": {},
"source": [
"Now pull out a random sample of payees as a list."
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "fe74a8ed",
"metadata": {},
"outputs": [],
"source": [
"sample_list = list(df.sample(10).payee)"
]
},
{
"cell_type": "markdown",
"id": "688192ae",
"metadata": {},
"source": [
"And see how it does."
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "a84d364a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'CALIFORNIA NOW ORGANIZATION': 'Other',\n",
" 'ALOHA SIGNS': 'Other',\n",
" \"SABELLA'S ITALIAN MARKET\": 'Restaurant',\n",
" 'ELIZABETH ESPARZA': 'Other',\n",
" 'DATA-SCRIBE': 'Other',\n",
" \"LISA HEMENWAY'S BISTRO\": 'Restaurant',\n",
" 'NEW EDGE MULTIMEDIA': 'Other',\n",
" 'FUSILLI': 'Restaurant',\n",
" 'FRIENDS OF DR IRENE PINKARD FOR CITY COUNCIL': 'Other',\n",
" 'ZEN SUSHI SACRAMENTO': 'Restaurant'}"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"classify_payees(sample_list)"
]
},
{
"cell_type": "markdown",
"id": "197856d9",
"metadata": {},
"source": [
"That’s nice for a sample. But how do you loop through the entire dataset and code them.\n",
"\n",
"One way to start is to write a function that will split up a list into batches of a certain size."
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "b784940f",
"metadata": {},
"outputs": [],
"source": [
"def get_batch_list(li, n=10):\n",
" \"\"\"Split the provided list into batches of size `n`.\"\"\"\n",
" batch_list = []\n",
" for i in range(0, len(li), n):\n",
" batch_list.append(li[i : i + n])\n",
" return batch_list"
]
},
{
"cell_type": "markdown",
"id": "9e35948e",
"metadata": {},
"source": [
"Before we loop through our payees, let’s add a couple libraries that will let us avoid hammering HF and keep tabs on our progress."
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "f1593a7d",
"metadata": {},
"outputs": [],
"source": [
"import time # NEW\n",
"import json\n",
"from rich import print\n",
"from rich.progress import track # NEW\n",
"import requests\n",
"from retry import retry\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"id": "da68c37f",
"metadata": {},
"source": [
"That batching trick can then be fit into a new function that will accept a big list of payees and classify them batch by batch."
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "6e6965f9",
"metadata": {},
"outputs": [],
"source": [
"def classify_batches(name_list, batch_size=10, wait=2):\n",
" \"\"\"Split the provided list of names into batches and classify with our LLM them one by one.\"\"\"\n",
" # Create a place to store the results\n",
" all_results = {}\n",
"\n",
" # Batch up the list\n",
" batch_list = get_batch_list(name_list, n=batch_size)\n",
"\n",
" # Loop through the list in batches\n",
" for batch in track(batch_list):\n",
" # Classify it with the LLM\n",
" batch_results = classify_payees(batch)\n",
"\n",
" # Add what we get back to the results\n",
" all_results.update(batch_results)\n",
"\n",
" # Tap the brakes to avoid overloading groq's API\n",
" time.sleep(wait)\n",
"\n",
" # Return the results\n",
" return all_results"
]
},
{
"cell_type": "markdown",
"id": "222a3846",
"metadata": {},
"source": [
"Now, let’s take out a bigger sample."
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "39778766",
"metadata": {},
"outputs": [],
"source": [
"bigger_sample = list(df.sample(100).payee)"
]
},
{
"cell_type": "markdown",
"id": "722de39a",
"metadata": {},
"source": [
"And let it rip."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f676e52",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"classify_batches(bigger_sample)"
]
},
{
"cell_type": "markdown",
"id": "fc2c1f94",
"metadata": {},
"source": [
"Printing out to the console is interesting, but eventually you’ll want to be able to work with the results in a more structured way. So let’s convert the results into a `pandas` DataFrame by modifying our function."
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "c41b736f",
"metadata": {},
"outputs": [],
"source": [
"def classify_batches(name_list, batch_size=10, wait=2):\n",
" # Store the results\n",
" all_results = {}\n",
"\n",
" # Batch up the list\n",
" batch_list = get_batch_list(name_list, n=batch_size)\n",
"\n",
" # Loop through the list in batches\n",
" for batch in track(batch_list):\n",
" # Classify it\n",
" batch_results = classify_payees(batch)\n",
"\n",
" # Add it to the results\n",
" all_results.update(batch_results)\n",
"\n",
" # Tap the brakes\n",
" time.sleep(wait)\n",
"\n",
" # Return the results (NEW)\n",
" return pd.DataFrame(\n",
" all_results.items(),\n",
" columns=[\"payee\", \"category\"]\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "353adf11",
"metadata": {},
"source": [
"Results can now be stored as a DataFrame."
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "51aa0550",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a4b561bb64554c70a7bfd309c43b60da",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"results_df = classify_batches(bigger_sample)"
]
},
{
"cell_type": "markdown",
"id": "96bd75bc",
"metadata": {},
"source": [
"And inspected using the standard `pandas` tools. Let's take a peek at the first records:"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "514971f9",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>payee</th>\n",
" <th>category</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>TAXIPASS</td>\n",
" <td>Other</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>THE JEFFERSON HOTEL</td>\n",
" <td>Hotel</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>NORMS RESTAURANT</td>\n",
" <td>Restaurant</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>JENNY OROPEZA FOR STATE SENATE</td>\n",
" <td>Other</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>BIG MAMA'S & PAPA'S PIZZERIA</td>\n",
" <td>Restaurant</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" payee category\n",
"0 TAXIPASS Other\n",
"1 THE JEFFERSON HOTEL Hotel\n",
"2 NORMS RESTAURANT Restaurant\n",
"3 JENNY OROPEZA FOR STATE SENATE Other\n",
"4 BIG MAMA'S & PAPA'S PIZZERIA Restaurant"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results_df.head()"
]
},
{
"cell_type": "markdown",
"id": "fef7be4e",
"metadata": {},
"source": [
"Or a sum of all the categories."
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "6911dc37",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"category\n",
"Other 67\n",
"Restaurant 20\n",
"Hotel 12\n",
"Bar 1\n",
"Name: count, dtype: int64"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results_df.category.value_counts()"
]
},
{
"cell_type": "markdown",
"id": "a8705a48-49e6-4ec8-8f3f-126bcf011f0f",
"metadata": {},
"source": [
"**[8. Evaluating prompts →](ch8-evaluating-prompts.ipynb)**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d96f1b46-7e66-4e5a-8d17-84a75b70404e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|