Juartaurus's picture
Upload folder using huggingface_hub
1865436
import contextlib
import copy
import io
import itertools
import json
import logging
import numpy as np
import os
import re
import torch
from collections import OrderedDict
from fvcore.common.file_io import PathManager
from pycocotools.coco import COCO
from detectron2.utils import comm
from detectron2.data import MetadataCatalog
from detectron2.evaluation.evaluator import DatasetEvaluator
import glob
import shutil
from shapely.geometry import Polygon, LinearRing
from detectron2.evaluation import text_eval_script
from detectron2.evaluation import text_eval_script_ic15
import zipfile
import pickle
import cv2
import editdistance
class TextEvaluator(DatasetEvaluator):
"""
Evaluate text proposals and recognition.
"""
def __init__(self, dataset_name, cfg, distributed, output_dir=None):
self._tasks = ("polygon", "recognition")
self._distributed = distributed
self._output_dir = output_dir
self._cpu_device = torch.device("cpu")
self._logger = logging.getLogger(__name__)
self._metadata = MetadataCatalog.get(dataset_name)
if not hasattr(self._metadata, "json_file"):
raise AttributeError(
f"json_file was not found in MetaDataCatalog for '{dataset_name}'."
)
CTLABELS = [" ","!",'"',"#","$","%","&","'","(",")","*","+",",","-",".","/","0","1","2","3","4","5","6","7","8","9",":",";","<","=",">","?","@","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z","[","\\","]","^","_","`","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z","{","|","}","~","ˋ","ˊ","﹒","ˀ","˜","ˇ","ˆ","˒","‑",'´', "~"]
json_file = PathManager.get_local_path(self._metadata.json_file)
with contextlib.redirect_stdout(io.StringIO()):
self._coco_api = COCO(json_file)
self.dataset_name = dataset_name
# use dataset_name to decide eval_gt_path
self.lexicon_type = 3
if "totaltext" in dataset_name:
self._text_eval_gt_path = "datasets/evaluation/gt_totaltext.zip"
self._word_spotting = True
self.dataset_name = "totaltext"
elif "ctw1500" in dataset_name:
self._text_eval_gt_path = "datasets/evaluation/gt_ctw1500.zip"
self._word_spotting = False
self.dataset_name = "ctw1500"
elif "icdar2015" in dataset_name:
self._text_eval_gt_path = "datasets/evaluation/gt_icdar2015.zip"
self._word_spotting = False
self.dataset_name = "icdar2015"
elif "vintext" in dataset_name:
self.lexicon_type = None
self._text_eval_gt_path = "datasets/evaluation/gt_fimotext.zip"
self._word_spotting = True
elif "custom" in dataset_name:
self._text_eval_gt_path = "datasets/evaluation/gt_custom.zip"
self._word_spotting = False
self._text_eval_confidence = cfg.TEST.INFERENCE_TH_TEST
self.nms_enable = cfg.TEST.USE_NMS_IN_TSET
def reset(self):
self._predictions = []
def process(self, inputs, outputs):
for input, output in zip(inputs, outputs):
prediction = {"image_id": input["image_id"]}
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = self.instances_to_coco_json(instances, input)
self._predictions.append(prediction)
def to_eval_format(self, file_path, temp_dir="temp_det_results", cf_th=0.5):
def fis_ascii(s):
a = (ord(c) < 128 for c in s)
return all(a)
def de_ascii(s):
a = [c for c in s if ord(c) < 128]
outa = ''
for i in a:
outa +=i
return outa
with open(file_path, 'r') as f:
data = json.load(f)
with open('temp_all_det_cors.txt', 'w') as f2:
for ix in range(len(data)):
if data[ix]['score'] > 0.1:
outstr = '{}: '.format(data[ix]['image_id'])
xmin = 1000000
ymin = 1000000
xmax = 0
ymax = 0
for i in range(len(data[ix]['polys'])):
outstr = outstr + str(int(data[ix]['polys'][i][0])) +','+str(int(data[ix]['polys'][i][1])) +','
if not "vintext" in self.dataset_name:
ass = de_ascii(data[ix]['rec'])
else:
ass = data[ix]['rec']
if len(ass)>=0: #
outstr = outstr + str(round(data[ix]['score'], 3)) +',####'+ass+'\n'
f2.writelines(outstr)
f2.close()
dirn = temp_dir
lsc = [cf_th]
fres = open('temp_all_det_cors.txt', 'r').readlines()
for isc in lsc:
if not os.path.isdir(dirn):
os.mkdir(dirn)
for line in fres:
line = line.strip()
s = line.split(': ')
filename = '{:07d}.txt'.format(int(s[0]))
outName = os.path.join(dirn, filename)
with open(outName, 'a') as fout:
ptr = s[1].strip().split(',####')
score = ptr[0].split(',')[-1]
if float(score) < isc:
continue
cors = ','.join(e for e in ptr[0].split(',')[:-1])
fout.writelines(cors+',####'+ptr[1]+'\n')
os.remove("temp_all_det_cors.txt")
def sort_detection(self, temp_dir):
origin_file = temp_dir
output_file = "final_"+temp_dir
output_file_full = "full_final_"+temp_dir
if not os.path.isdir(output_file_full):
os.mkdir(output_file_full)
if not os.path.isdir(output_file):
os.mkdir(output_file)
files = glob.glob(origin_file+'*.txt')
files.sort()
if "totaltext" in self.dataset_name:
if not self.lexicon_type == None:
lexicon_path = 'datasets/totaltext/weak_voc_new.txt'
lexicon_fid=open(lexicon_path, 'r')
pair_list = open('datasets/totaltext/weak_voc_pair_list.txt', 'r')
pairs = dict()
for line in pair_list.readlines():
line=line.strip()
word = line.split(' ')[0].upper()
word_gt = line[len(word)+1:]
pairs[word] = word_gt
lexicon_fid=open(lexicon_path, 'r')
lexicon=[]
for line in lexicon_fid.readlines():
line=line.strip()
lexicon.append(line)
elif "ctw1500" in self.dataset_name:
if not self.lexicon_type == None:
lexicon_path = 'datasets/CTW1500/weak_voc_new.txt'
lexicon_fid=open(lexicon_path, 'r')
pair_list = open('datasets/CTW1500/weak_voc_pair_list.txt', 'r')
pairs = dict()
lexicon_fid=open(lexicon_path, 'r')
lexicon=[]
for line in lexicon_fid.readlines():
line=line.strip()
lexicon.append(line)
pairs[line.upper()] = line
elif "icdar2015" in self.dataset_name:
if self.lexicon_type==1:
# generic lexicon
lexicon_path = 'datasets/icdar2015/GenericVocabulary_new.txt'
lexicon_fid=open(lexicon_path, 'r')
pair_list = open('datasets/icdar2015/GenericVocabulary_pair_list.txt', 'r')
pairs = dict()
for line in pair_list.readlines():
line=line.strip()
word = line.split(' ')[0].upper()
word_gt = line[len(word)+1:]
pairs[word] = word_gt
lexicon_fid=open(lexicon_path, 'r')
lexicon=[]
for line in lexicon_fid.readlines():
line=line.strip()
lexicon.append(line)
if self.lexicon_type==2:
# weak lexicon
lexicon_path = 'datasets/icdar2015/ch4_test_vocabulary_new.txt'
lexicon_fid=open(lexicon_path, 'r')
pair_list = open('datasets/icdar2015/ch4_test_vocabulary_pair_list.txt', 'r')
pairs = dict()
for line in pair_list.readlines():
line=line.strip()
word = line.split(' ')[0].upper()
word_gt = line[len(word)+1:]
pairs[word] = word_gt
lexicon_fid=open(lexicon_path, 'r')
lexicon=[]
for line in lexicon_fid.readlines():
line=line.strip()
lexicon.append(line)
def find_match_word(rec_str, pairs, lexicon=None):
rec_str = rec_str.upper()
dist_min = 100
dist_min_pre = 100
match_word = ''
match_dist = 100
for word in lexicon:
word = word.upper()
ed = editdistance.eval(rec_str, word)
length_dist = abs(len(word) - len(rec_str))
dist = ed
if dist<dist_min:
dist_min = dist
match_word = pairs[word]
match_dist = dist
return match_word, match_dist
for i in files:
if "icdar2015" in self.dataset_name:
out = output_file + 'res_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt'
out_full = output_file_full + 'res_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt'
if self.lexicon_type==3:
lexicon_path = 'datasets/icdar2015/new_strong_lexicon/new_voc_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt'
lexicon_fid=open(lexicon_path, 'r')
pair_list = open('datasets/icdar2015/new_strong_lexicon/pair_voc_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt')
pairs = dict()
for line in pair_list.readlines():
line=line.strip()
word = line.split(' ')[0].upper()
word_gt = line[len(word)+1:]
pairs[word] = word_gt
lexicon_fid=open(lexicon_path, 'r')
lexicon=[]
for line in lexicon_fid.readlines():
line=line.strip()
lexicon.append(line)
else:
out = i.replace(origin_file, output_file)
out_full = i.replace(origin_file, output_file_full)
fin = open(i, 'r').readlines()
fout = open(out, 'w')
fout_full = open(out_full, 'w')
for iline, line in enumerate(fin):
ptr = line.strip().split(',####')
rec = ptr[1]
cors = ptr[0].split(',')
assert(len(cors) %2 == 0), 'cors invalid.'
pts = [(int(cors[j]), int(cors[j+1])) for j in range(0,len(cors),2)]
try:
pgt = Polygon(pts)
except Exception as e:
print(e)
print('An invalid detection in {} line {} is removed ... '.format(i, iline))
continue
if not pgt.is_valid:
print('An invalid detection in {} line {} is removed ... '.format(i, iline))
continue
pRing = LinearRing(pts)
if not "icdar2015" in self.dataset_name:
if pRing.is_ccw:
pts.reverse()
outstr = ''
for ipt in pts[:-1]:
outstr += (str(int(ipt[0]))+','+ str(int(ipt[1]))+',')
outstr += (str(int(pts[-1][0]))+','+ str(int(pts[-1][1])))
pts = outstr
if "icdar2015" in self.dataset_name:
outstr = outstr + ',' + rec
else:
outstr = outstr + ',####' + rec
fout.writelines(outstr+'\n')
if self.lexicon_type is None:
rec_full = rec
else:
match_word, match_dist = find_match_word(rec,pairs,lexicon)
if match_dist<1.5:
rec_full = match_word
if "icdar2015" in self.dataset_name:
pts = pts + ',' + rec_full
else:
pts = pts + ',####' + rec_full
fout_full.writelines(pts+'\n')
fout.close()
fout_full.close()
def zipdir(path, ziph):
# ziph is zipfile handle
for root, dirs, files in os.walk(path):
for file in files:
ziph.write(os.path.join(root, file))
if "icdar2015" in self.dataset_name:
os.system('zip -r -q -j '+'det.zip'+' '+output_file+'/*')
os.system('zip -r -q -j '+'det_full.zip'+' '+output_file_full+'/*')
shutil.rmtree(origin_file)
shutil.rmtree(output_file)
shutil.rmtree(output_file_full)
return "det.zip", "det_full.zip"
else:
os.chdir(output_file)
zipf = zipfile.ZipFile('../det.zip', 'w', zipfile.ZIP_DEFLATED)
zipdir('./', zipf)
zipf.close()
os.chdir("../")
os.chdir(output_file_full)
zipf_full = zipfile.ZipFile('../det_full.zip', 'w', zipfile.ZIP_DEFLATED)
zipdir('./', zipf_full)
zipf_full.close()
os.chdir("../")
# clean temp files
shutil.rmtree(origin_file)
shutil.rmtree(output_file)
shutil.rmtree(output_file_full)
return "det.zip", "det_full.zip"
def evaluate_with_official_code(self, result_path, gt_path):
if "icdar2015" in self.dataset_name:
return text_eval_script_ic15.text_eval_main_ic15(det_file=result_path, gt_file=gt_path, is_word_spotting=self._word_spotting)
else:
return text_eval_script.text_eval_main(det_file=result_path, gt_file=gt_path, is_word_spotting=self._word_spotting)
def evaluate(self):
if self._distributed:
comm.synchronize()
predictions = comm.gather(self._predictions, dst=0)
predictions = list(itertools.chain(*predictions))
if not comm.is_main_process():
return {}
else:
predictions = self._predictions
if len(predictions) == 0:
self._logger.warning("[COCOEvaluator] Did not receive valid predictions.")
return {}
coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(self._output_dir, "text_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w", encoding='utf-8') as f:
f.write(str(json.dumps(coco_results, ensure_ascii = True)))
f.flush()
self._results = OrderedDict()
# eval text
if not self._text_eval_gt_path:
return copy.deepcopy(self._results)
temp_dir = "temp_det_results/"
self.to_eval_format(file_path, temp_dir, self._text_eval_confidence)
result_path, result_path_full = self.sort_detection(temp_dir)
text_result = self.evaluate_with_official_code(result_path, self._text_eval_gt_path) # None
text_result["e2e_method"] = "None-" + text_result["e2e_method"]
if not self.lexicon_type == None:
dict_lexicon = {"1": "Generic", "2": "Weak", "3": "Strong"}
text_result_full = self.evaluate_with_official_code(result_path_full, self._text_eval_gt_path) # with lexicon
text_result_full["e2e_method"] = dict_lexicon[str(self.lexicon_type)] + "-" + text_result_full["e2e_method"]
# os.remove(result_path)
# os.remove(result_path_full)
# parse
template = "(\S+): (\S+): (\S+), (\S+): (\S+), (\S+): (\S+)"
result = text_result["det_only_method"]
groups = re.match(template, result).groups()
self._results[groups[0]] = {groups[i*2+1]: float(groups[(i+1)*2]) for i in range(3)}
result = text_result["e2e_method"]
groups = re.match(template, result).groups()
self._results[groups[0]] = {groups[i*2+1]: float(groups[(i+1)*2]) for i in range(3)}
if not self.lexicon_type == None:
result = text_result_full["e2e_method"]
groups = re.match(template, result).groups()
self._results[groups[0]] = {groups[i*2+1]: float(groups[(i+1)*2]) for i in range(3)}
return copy.deepcopy(self._results)
def instances_to_coco_json(self, instances, inputs):
img_id = inputs["image_id"]
width = inputs['width']
height = inputs['height']
num_instances = len(instances)
if num_instances == 0:
return []
scores = instances.scores.tolist()
masks = np.asarray(instances.pred_masks)
masks = [GenericMask(x, height, width) for x in masks]
recs = instances.pred_rec.numpy()
if self.nms_enable:
polys = []
for mask in masks:
if not len(mask.polygons):
continue
polys.append(np.concatenate(mask.polygons).reshape(-1,2))
keep = self.py_cpu_pnms(polys,scores,0.5)
results = []
i = 0
for mask, rec, score in zip(masks, recs, scores):
# if rec > 0.3:
if not len(mask.polygons):
continue
if self.nms_enable:
if i not in keep:
i = i+1
continue
poly = polys[i]
if 'icdar2015' in self.dataset_name:
poly = polygon2rbox(poly, height, width)
poly = np.array(poly)
rec_string = self.decode(rec)
if not len(rec_string):
i = i+1
continue
result = {
"image_id": img_id,
"category_id": 1,
"polys": poly.tolist(),
"rec": rec_string,
"score": score,
}
results.append(result)
i = i+1
return results
def decode(self, rec):
CTLABELS = [" ","!",'"',"#","$","%","&","'","(",")","*","+",",","-",".","/","0","1","2","3","4","5","6","7","8","9",":",";","<","=",">","?","@","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z","[","\\","]","^","_","`","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z","{","|","}","~","ˋ","ˊ","﹒","ˀ","˜","ˇ","ˆ","˒","‑",'´', "~"]
s = ''
tmp = []
for i in range(len(rec)-1):
if i == 0:
tmp.append(rec[i])
else:
if rec[i] != rec[i-1]:
tmp.append(rec[i])
for c in tmp:
c = int(c)
if 0<c < len(CTLABELS):
if not "ctw1500" in self.dataset_name and not "vintext" in self.dataset_name:
print('a')
if CTLABELS[c-1] in "_0123456789abcdefghijklmnopqrstuvwxyz":
s += CTLABELS[c-1]
else:
# print('b')
s += CTLABELS[c-1]
else:
s += u''
if "vintext" in self.dataset_name:
s = vintext_decoder(s)
return s
def py_cpu_pnms(self, dets, scores, thresh):
pts = dets
scores = np.array(scores)
order = scores.argsort()[::-1]
areas = np.zeros(scores.shape)
order = scores.argsort()[::-1]
inter_areas = np.zeros((scores.shape[0], scores.shape[0]))
for il in range(len(pts)):
poly = Polygon(pts[il]).buffer(0.001)
areas[il] = poly.area
for jl in range(il, len(pts)):
polyj = Polygon(pts[jl].tolist()).buffer(0.001)
inS = poly.intersection(polyj)
try:
inter_areas[il][jl] = inS.area
except:
import pdb;pdb.set_trace()
inter_areas[jl][il] = inS.area
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = inter_areas[i][order[1:]] / ((areas[i]) + areas[order[1:]] - inter_areas[i][order[1:]])
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def polygon2rbox(polygon, image_height, image_width):
poly = np.array(polygon).reshape((-1, 2)).astype(np.float32)
rect = cv2.minAreaRect(poly)
corners = cv2.boxPoints(rect)
corners = np.array(corners, dtype="int")
pts = get_tight_rect(corners, 0, 0, image_height, image_width, 1)
pts = np.array(pts).reshape(-1,2)
pts = pts.tolist()
return pts
def get_tight_rect(points, start_x, start_y, image_height, image_width, scale):
points = list(points)
ps = sorted(points, key=lambda x: x[0])
if ps[1][1] > ps[0][1]:
px1 = ps[0][0] * scale + start_x
py1 = ps[0][1] * scale + start_y
px4 = ps[1][0] * scale + start_x
py4 = ps[1][1] * scale + start_y
else:
px1 = ps[1][0] * scale + start_x
py1 = ps[1][1] * scale + start_y
px4 = ps[0][0] * scale + start_x
py4 = ps[0][1] * scale + start_y
if ps[3][1] > ps[2][1]:
px2 = ps[2][0] * scale + start_x
py2 = ps[2][1] * scale + start_y
px3 = ps[3][0] * scale + start_x
py3 = ps[3][1] * scale + start_y
else:
px2 = ps[3][0] * scale + start_x
py2 = ps[3][1] * scale + start_y
px3 = ps[2][0] * scale + start_x
py3 = ps[2][1] * scale + start_y
px1 = min(max(px1, 1), image_width - 1)
px2 = min(max(px2, 1), image_width - 1)
px3 = min(max(px3, 1), image_width - 1)
px4 = min(max(px4, 1), image_width - 1)
py1 = min(max(py1, 1), image_height - 1)
py2 = min(max(py2, 1), image_height - 1)
py3 = min(max(py3, 1), image_height - 1)
py4 = min(max(py4, 1), image_height - 1)
return [px1, py1, px2, py2, px3, py3, px4, py4]
class GenericMask:
"""
Attribute:
polygons (list[ndarray]): list[ndarray]: polygons for this mask.
Each ndarray has format [x, y, x, y, ...]
mask (ndarray): a binary mask
"""
def __init__(self, mask_or_polygons, height, width):
self._mask = self._polygons = self._has_holes = None
self.height = height
self.width = width
m = mask_or_polygons
if isinstance(m, dict):
# RLEs
assert "counts" in m and "size" in m
if isinstance(m["counts"], list): # uncompressed RLEs
h, w = m["size"]
assert h == height and w == width
m = mask_util.frPyObjects(m, h, w)
self._mask = mask_util.decode(m)[:, :]
return
if isinstance(m, list): # list[ndarray]
self._polygons = [np.asarray(x).reshape(-1) for x in m]
return
if isinstance(m, np.ndarray): # assumed to be a binary mask
assert m.shape[1] != 2, m.shape
assert m.shape == (height, width), m.shape
self._mask = m.astype("uint8")
return
raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m)))
@property
def mask(self):
if self._mask is None:
self._mask = self.polygons_to_mask(self._polygons)
return self._mask
@property
def polygons(self):
if self._polygons is None:
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
return self._polygons
@property
def has_holes(self):
if self._has_holes is None:
if self._mask is not None:
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
else:
self._has_holes = False # if original format is polygon, does not have holes
return self._has_holes
def mask_to_polygons(self, mask):
# cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
# hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
# Internal contours (holes) are placed in hierarchy-2.
# cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr
#res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
hierarchy = res[-1]
if hierarchy is None: # empty mask
return [], False
has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
res = res[-2]
res = [x.flatten() for x in res]
# These coordinates from OpenCV are integers in range [0, W-1 or H-1].
# We add 0.5 to turn them into real-value coordinate space. A better solution
# would be to first +0.5 and then dilate the returned polygon by 0.5.
res = [x + 0.5 for x in res if len(x) >= 6]
return res, has_holes
def polygons_to_mask(self, polygons):
rle = mask_util.frPyObjects(polygons, self.height, self.width)
rle = mask_util.merge(rle)
return mask_util.decode(rle)[:, :]
def area(self):
return self.mask.sum()
def bbox(self):
p = mask_util.frPyObjects(self.polygons, self.height, self.width)
p = mask_util.merge(p)
bbox = mask_util.toBbox(p)
bbox[2] += bbox[0]
bbox[3] += bbox[1]
return bbox
dictionary = "aàáạảãâầấậẩẫăằắặẳẵAÀÁẠẢÃĂẰẮẶẲẴÂẦẤẬẨẪeèéẹẻẽêềếệểễEÈÉẸẺẼÊỀẾỆỂỄoòóọỏõôồốộổỗơờớợởỡOÒÓỌỎÕÔỒỐỘỔỖƠỜỚỢỞỠiìíịỉĩIÌÍỊỈĨuùúụủũưừứựửữƯỪỨỰỬỮUÙÚỤỦŨyỳýỵỷỹYỲÝỴỶỸ"
def make_groups():
groups = []
i = 0
while i < len(dictionary) - 5:
group = [c for c in dictionary[i : i + 6]]
i += 6
groups.append(group)
return groups
groups = make_groups()
TONES = ["", "ˋ", "ˊ", "﹒", "ˀ", "˜"]
SOURCES = ["ă", "â", "Ă", "Â", "ê", "Ê", "ô", "ơ", "Ô", "Ơ", "ư", "Ư", "Đ", "đ"]
TARGETS = ["aˇ", "aˆ", "Aˇ", "Aˆ", "eˆ", "Eˆ", "oˆ", "o˒", "Oˆ", "O˒", "u˒", "U˒", "D-", "d‑"]
def correct_tone_position(word):
word = word[:-1]
if len(word) < 2:
pass
first_ord_char = ""
second_order_char = ""
for char in word:
for group in groups:
if char in group:
second_order_char = first_ord_char
first_ord_char = group[0]
if word[-1] == first_ord_char and second_order_char != "":
pair_chars = ["qu", "Qu", "qU", "QU", "gi", "Gi", "gI", "GI"]
for pair in pair_chars:
if pair in word and second_order_char in ["u", "U", "i", "I"]:
return first_ord_char
return second_order_char
return first_ord_char
def vintext_decoder(recognition):
for char in TARGETS:
recognition = recognition.replace(char, SOURCES[TARGETS.index(char)])
if len(recognition) < 1:
return recognition
if recognition[-1] in TONES:
if len(recognition) < 2:
return recognition
replace_char = correct_tone_position(recognition)
tone = recognition[-1]
recognition = recognition[:-1]
for group in groups:
if replace_char in group:
recognition = recognition.replace(replace_char, group[TONES.index(tone)])
return recognition