Spaces:
Build error
Build error
import torch | |
from torch import nn, Tensor | |
import torch.nn.functional as F | |
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
import math | |
class FocalTransformerBlock(nn.Module): | |
r""" Focal Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resulotion. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
expand_size (int): expand size at first focal level (finest level). | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
pool_method (str): window pooling method. Default: none, options: [none|fc|conv] | |
focal_level (int): number of focal levels. Default: 1. | |
focal_window (int): region size of focal attention. Default: 1 | |
use_layerscale (bool): whether use layer scale for training stability. Default: False | |
layerscale_value (float): scaling value for layer scale. Default: 1e-4 | |
""" | |
def __init__(self, dim, input_resolution, num_heads, window_size=7, expand_size=0, shift_size=0, | |
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pool_method="none", | |
focal_level=1, focal_window=1, use_layerscale=False, layerscale_value=1e-4): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.expand_size = expand_size | |
self.mlp_ratio = mlp_ratio | |
self.pool_method = pool_method | |
self.focal_level = focal_level | |
self.focal_window = focal_window | |
self.use_layerscale = use_layerscale | |
if min(self.input_resolution) <= self.window_size: | |
# if window size is larger than input resolution, we don't partition windows | |
self.expand_size = 0 | |
self.shift_size = 0 | |
self.window_size = min(self.input_resolution) | |
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" | |
self.window_size_glo = self.window_size | |
self.pool_layers = nn.ModuleList() | |
if self.pool_method != "none": | |
for k in range(self.focal_level-1): | |
window_size_glo = math.floor(self.window_size_glo / (2 ** k)) | |
if self.pool_method == "fc": | |
self.pool_layers.append(nn.Linear(window_size_glo * window_size_glo, 1)) | |
self.pool_layers[-1].weight.data.fill_(1./(window_size_glo * window_size_glo)) | |
self.pool_layers[-1].bias.data.fill_(0) | |
elif self.pool_method == "conv": | |
self.pool_layers.append(nn.Conv2d(dim, dim, kernel_size=window_size_glo, stride=window_size_glo, groups=dim)) | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttention( | |
dim, expand_size=self.expand_size, window_size=(self.window_size,self.window_size), | |
focal_window=focal_window, focal_level=focal_level, num_heads=num_heads, | |
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, pool_method=pool_method) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
if self.shift_size > 0: | |
# calculate attention mask for SW-MSA | |
H, W = self.input_resolution | |
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 | |
h_slices = (slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None)) | |
w_slices = (slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
else: | |
attn_mask = None | |
self.register_buffer("attn_mask", attn_mask) | |
if self.use_layerscale: | |
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) | |
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) | |
def forward(self, x): | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
shortcut = x | |
x = self.norm1(x) | |
x = x.view(B, H, W, C) | |
# pad feature maps to multiples of window size | |
pad_l = pad_t = 0 | |
pad_r = (self.window_size - W % self.window_size) % self.window_size | |
pad_b = (self.window_size - H % self.window_size) % self.window_size | |
if pad_r > 0 or pad_b > 0: | |
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
B, H, W, C = x.shape | |
if self.shift_size > 0: | |
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
else: | |
shifted_x = x | |
x_windows_all = [shifted_x] | |
x_window_masks_all = [self.attn_mask] | |
if self.focal_level > 1 and self.pool_method != "none": | |
# if we add coarser granularity and the pool method is not none | |
for k in range(self.focal_level-1): | |
window_size_glo = math.floor(self.window_size_glo / (2 ** k)) | |
pooled_h = math.ceil(H / self.window_size) * (2 ** k) | |
pooled_w = math.ceil(W / self.window_size) * (2 ** k) | |
H_pool = pooled_h * window_size_glo | |
W_pool = pooled_w * window_size_glo | |
x_level_k = shifted_x | |
# trim or pad shifted_x depending on the required size | |
if H > H_pool: | |
trim_t = (H - H_pool) // 2 | |
trim_b = H - H_pool - trim_t | |
x_level_k = x_level_k[:, trim_t:-trim_b] | |
elif H < H_pool: | |
pad_t = (H_pool - H) // 2 | |
pad_b = H_pool - H - pad_t | |
x_level_k = F.pad(x_level_k, (0,0,0,0,pad_t,pad_b)) | |
if W > W_pool: | |
trim_l = (W - W_pool) // 2 | |
trim_r = W - W_pool - trim_l | |
x_level_k = x_level_k[:, :, trim_l:-trim_r] | |
elif W < W_pool: | |
pad_l = (W_pool - W) // 2 | |
pad_r = W_pool - W - pad_l | |
x_level_k = F.pad(x_level_k, (0,0,pad_l,pad_r)) | |
x_windows_noreshape = window_partition_noreshape(x_level_k.contiguous(), window_size_glo) # B, nw, nw, window_size, window_size, C | |
nWh, nWw = x_windows_noreshape.shape[1:3] | |
if self.pool_method == "mean": | |
x_windows_pooled = x_windows_noreshape.mean([3, 4]) # B, nWh, nWw, C | |
elif self.pool_method == "max": | |
x_windows_pooled = x_windows_noreshape.max(-2)[0].max(-2)[0].view(B, nWh, nWw, C) # B, nWh, nWw, C | |
elif self.pool_method == "fc": | |
x_windows_noreshape = x_windows_noreshape.view(B, nWh, nWw, window_size_glo*window_size_glo, C).transpose(3, 4) # B, nWh, nWw, C, wsize**2 | |
x_windows_pooled = self.pool_layers[k](x_windows_noreshape).flatten(-2) # B, nWh, nWw, C | |
elif self.pool_method == "conv": | |
x_windows_noreshape = x_windows_noreshape.view(-1, window_size_glo, window_size_glo, C).permute(0, 3, 1, 2).contiguous() # B * nw * nw, C, wsize, wsize | |
x_windows_pooled = self.pool_layers[k](x_windows_noreshape).view(B, nWh, nWw, C) # B, nWh, nWw, C | |
x_windows_all += [x_windows_pooled] | |
x_window_masks_all += [None] | |
attn_windows = self.attn(x_windows_all, mask_all=x_window_masks_all) # nW*B, window_size*window_size, C | |
attn_windows = attn_windows[:, :self.window_size ** 2] | |
# merge windows | |
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | |
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
else: | |
x = shifted_x | |
x = x[:, :self.input_resolution[0], :self.input_resolution[1]].contiguous().view(B, -1, C) | |
# FFN | |
x = shortcut + self.drop_path(x if (not self.use_layerscale) else (self.gamma_1 * x)) | |
x = x + self.drop_path(self.mlp(self.norm2(x)) if (not self.use_layerscale) else (self.gamma_2 * self.mlp(self.norm2(x)))) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ | |
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" | |
def flops(self): | |
flops = 0 | |
H, W = self.input_resolution | |
# norm1 | |
flops += self.dim * H * W | |
# W-MSA/SW-MSA | |
nW = H * W / self.window_size / self.window_size | |
flops += nW * self.attn.flops(self.window_size * self.window_size, self.window_size, self.focal_window) | |
if self.pool_method != "none" and self.focal_level > 1: | |
for k in range(self.focal_level-1): | |
window_size_glo = math.floor(self.window_size_glo / (2 ** k)) | |
nW_glo = nW * (2**k) | |
# (sub)-window pooling | |
flops += nW_glo * self.dim * window_size_glo * window_size_glo | |
# qkv for global levels | |
# NOTE: in our implementation, we pass the pooled window embedding to qkv embedding layer, | |
# but theoritically, we only need to compute k and v. | |
flops += nW_glo * self.dim * 3 * self.dim | |
# mlp | |
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio | |
# norm2 | |
flops += self.dim * H * W | |
return flops | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (B, H, W, C) | |
window_size (int): window size | |
Returns: | |
windows: (num_windows*B, window_size, window_size, C) | |
""" | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows | |
def window_partition_noreshape(x, window_size): | |
""" | |
Args: | |
x: (B, H, W, C) | |
window_size (int): window size | |
Returns: | |
windows: (B, num_windows_h, num_windows_w, window_size, window_size, C) | |
""" | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous() | |
return windows | |
def window_reverse(windows, window_size, H, W): | |
""" | |
Args: | |
windows: (num_windows*B, window_size, window_size, C) | |
window_size (int): Window size | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, H, W, C) | |
""" | |
B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
def get_roll_masks(H, W, window_size, shift_size): | |
##################################### | |
# move to top-left | |
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 | |
h_slices = (slice(0, H-window_size), | |
slice(H-window_size, H-shift_size), | |
slice(H-shift_size, H)) | |
w_slices = (slice(0, W-window_size), | |
slice(W-window_size, W-shift_size), | |
slice(W-shift_size, W)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, window_size) # nW, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, window_size * window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask_tl = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
#################################### | |
# move to top right | |
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 | |
h_slices = (slice(0, H-window_size), | |
slice(H-window_size, H-shift_size), | |
slice(H-shift_size, H)) | |
w_slices = (slice(0, shift_size), | |
slice(shift_size, window_size), | |
slice(window_size, W)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, window_size) # nW, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, window_size * window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask_tr = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
#################################### | |
# move to bottom left | |
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 | |
h_slices = (slice(0, shift_size), | |
slice(shift_size, window_size), | |
slice(window_size, H)) | |
w_slices = (slice(0, W-window_size), | |
slice(W-window_size, W-shift_size), | |
slice(W-shift_size, W)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, window_size) # nW, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, window_size * window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask_bl = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
#################################### | |
# move to bottom right | |
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 | |
h_slices = (slice(0, shift_size), | |
slice(shift_size, window_size), | |
slice(window_size, H)) | |
w_slices = (slice(0, shift_size), | |
slice(shift_size, window_size), | |
slice(window_size, W)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, window_size) # nW, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, window_size * window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask_br = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
# append all | |
attn_mask_all = torch.cat((attn_mask_tl, attn_mask_tr, attn_mask_bl, attn_mask_br), -1) | |
return attn_mask_all | |
def get_relative_position_index(q_windows, k_windows): | |
""" | |
Args: | |
q_windows: tuple (query_window_height, query_window_width) | |
k_windows: tuple (key_window_height, key_window_width) | |
Returns: | |
relative_position_index: query_window_height*query_window_width, key_window_height*key_window_width | |
""" | |
# get pair-wise relative position index for each token inside the window | |
coords_h_q = torch.arange(q_windows[0]) | |
coords_w_q = torch.arange(q_windows[1]) | |
coords_q = torch.stack(torch.meshgrid([coords_h_q, coords_w_q])) # 2, Wh_q, Ww_q | |
coords_h_k = torch.arange(k_windows[0]) | |
coords_w_k = torch.arange(k_windows[1]) | |
coords_k = torch.stack(torch.meshgrid([coords_h_k, coords_w_k])) # 2, Wh, Ww | |
coords_flatten_q = torch.flatten(coords_q, 1) # 2, Wh_q*Ww_q | |
coords_flatten_k = torch.flatten(coords_k, 1) # 2, Wh_k*Ww_k | |
relative_coords = coords_flatten_q[:, :, None] - coords_flatten_k[:, None, :] # 2, Wh_q*Ww_q, Wh_k*Ww_k | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh_q*Ww_q, Wh_k*Ww_k, 2 | |
relative_coords[:, :, 0] += k_windows[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += k_windows[1] - 1 | |
relative_coords[:, :, 0] *= (q_windows[1] + k_windows[1]) - 1 | |
relative_position_index = relative_coords.sum(-1) # Wh_q*Ww_q, Wh_k*Ww_k | |
return relative_position_index | |
class WindowAttention(nn.Module): | |
r""" Window based multi-head self attention (W-MSA) module with relative position bias. | |
Args: | |
dim (int): Number of input channels. | |
expand_size (int): The expand size at focal level 1. | |
window_size (tuple[int]): The height and width of the window. | |
focal_window (int): Focal region size. | |
focal_level (int): Focal attention level. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
pool_method (str): window pooling method. Default: none | |
""" | |
def __init__(self, dim, expand_size, window_size, focal_window, focal_level, num_heads, | |
qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0., pool_method="none"): | |
super().__init__() | |
self.dim = dim | |
self.expand_size = expand_size | |
self.window_size = window_size # Wh, Ww | |
self.pool_method = pool_method | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.focal_level = focal_level | |
self.focal_window = focal_window | |
# define a parameter table of relative position bias for each window | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
self.register_buffer("relative_position_index", relative_position_index) | |
if self.expand_size > 0 and focal_level > 0: | |
# define a parameter table of position bias between window and its fine-grained surroundings | |
self.window_size_of_key = self.window_size[0] * self.window_size[1] if self.expand_size == 0 else \ | |
(4 * self.window_size[0] * self.window_size[1] - 4 * (self.window_size[0] - self.expand_size) * (self.window_size[0] - self.expand_size)) | |
self.relative_position_bias_table_to_neighbors = nn.Parameter( | |
torch.zeros(1, num_heads, self.window_size[0] * self.window_size[1], self.window_size_of_key)) # Wh*Ww, nH, nSurrounding | |
trunc_normal_(self.relative_position_bias_table_to_neighbors, std=.02) | |
# get mask for rolled k and rolled v | |
mask_tl = torch.ones(self.window_size[0], self.window_size[1]); mask_tl[:-self.expand_size, :-self.expand_size] = 0 | |
mask_tr = torch.ones(self.window_size[0], self.window_size[1]); mask_tr[:-self.expand_size, self.expand_size:] = 0 | |
mask_bl = torch.ones(self.window_size[0], self.window_size[1]); mask_bl[self.expand_size:, :-self.expand_size] = 0 | |
mask_br = torch.ones(self.window_size[0], self.window_size[1]); mask_br[self.expand_size:, self.expand_size:] = 0 | |
mask_rolled = torch.stack((mask_tl, mask_tr, mask_bl, mask_br), 0).flatten(0) | |
self.register_buffer("valid_ind_rolled", mask_rolled.nonzero().view(-1)) | |
if pool_method != "none" and focal_level > 1: | |
self.relative_position_bias_table_to_windows = nn.ParameterList() | |
self.unfolds = nn.ModuleList() | |
# build relative position bias between local patch and pooled windows | |
for k in range(focal_level-1): | |
stride = 2**k | |
kernel_size = 2*(self.focal_window // 2) + 2**k + (2**k-1) | |
# define unfolding operations | |
self.unfolds += [nn.Unfold( | |
kernel_size=(kernel_size, kernel_size), | |
stride=stride, padding=kernel_size // 2) | |
] | |
# define relative position bias table | |
relative_position_bias_table_to_windows = nn.Parameter( | |
torch.zeros( | |
self.num_heads, | |
(self.window_size[0] + self.focal_window + 2**k - 2) * (self.window_size[1] + self.focal_window + 2**k - 2), | |
) | |
) | |
trunc_normal_(relative_position_bias_table_to_windows, std=.02) | |
self.relative_position_bias_table_to_windows.append(relative_position_bias_table_to_windows) | |
# define relative position bias index | |
relative_position_index_k = get_relative_position_index(self.window_size, to_2tuple(self.focal_window + 2**k - 1)) | |
self.register_buffer("relative_position_index_{}".format(k), relative_position_index_k) | |
# define unfolding index for focal_level > 0 | |
if k > 0: | |
mask = torch.zeros(kernel_size, kernel_size); mask[(2**k)-1:, (2**k)-1:] = 1 | |
self.register_buffer("valid_ind_unfold_{}".format(k), mask.flatten(0).nonzero().view(-1)) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x_all, mask_all=None): | |
""" | |
Args: | |
x_all (list[Tensors]): input features at different granularity | |
mask_all (list[Tensors/None]): masks for input features at different granularity | |
""" | |
x = x_all[0] # | |
B, nH, nW, C = x.shape | |
qkv = self.qkv(x).reshape(B, nH, nW, 3, C).permute(3, 0, 1, 2, 4).contiguous() | |
q, k, v = qkv[0], qkv[1], qkv[2] # B, nH, nW, C | |
# partition q map | |
(q_windows, k_windows, v_windows) = map( | |
lambda t: window_partition(t, self.window_size[0]).view( | |
-1, self.window_size[0] * self.window_size[0], self.num_heads, C // self.num_heads | |
).transpose(1, 2), | |
(q, k, v) | |
) | |
if self.expand_size > 0 and self.focal_level > 0: | |
(k_tl, v_tl) = map( | |
lambda t: torch.roll(t, shifts=(-self.expand_size, -self.expand_size), dims=(1, 2)), (k, v) | |
) | |
(k_tr, v_tr) = map( | |
lambda t: torch.roll(t, shifts=(-self.expand_size, self.expand_size), dims=(1, 2)), (k, v) | |
) | |
(k_bl, v_bl) = map( | |
lambda t: torch.roll(t, shifts=(self.expand_size, -self.expand_size), dims=(1, 2)), (k, v) | |
) | |
(k_br, v_br) = map( | |
lambda t: torch.roll(t, shifts=(self.expand_size, self.expand_size), dims=(1, 2)), (k, v) | |
) | |
(k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows) = map( | |
lambda t: window_partition(t, self.window_size[0]).view(-1, self.window_size[0] * self.window_size[0], self.num_heads, C // self.num_heads), | |
(k_tl, k_tr, k_bl, k_br) | |
) | |
(v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows) = map( | |
lambda t: window_partition(t, self.window_size[0]).view(-1, self.window_size[0] * self.window_size[0], self.num_heads, C // self.num_heads), | |
(v_tl, v_tr, v_bl, v_br) | |
) | |
k_rolled = torch.cat((k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows), 1).transpose(1, 2) | |
v_rolled = torch.cat((v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows), 1).transpose(1, 2) | |
# mask out tokens in current window | |
k_rolled = k_rolled[:, :, self.valid_ind_rolled] | |
v_rolled = v_rolled[:, :, self.valid_ind_rolled] | |
k_rolled = torch.cat((k_windows, k_rolled), 2) | |
v_rolled = torch.cat((v_windows, v_rolled), 2) | |
else: | |
k_rolled = k_windows; v_rolled = v_windows; | |
if self.pool_method != "none" and self.focal_level > 1: | |
k_pooled = [] | |
v_pooled = [] | |
for k in range(self.focal_level-1): | |
stride = 2**k | |
x_window_pooled = x_all[k+1] # B, nWh, nWw, C | |
nWh, nWw = x_window_pooled.shape[1:3] | |
# generate mask for pooled windows | |
mask = x_window_pooled.new(nWh, nWw).fill_(1) | |
unfolded_mask = self.unfolds[k](mask.unsqueeze(0).unsqueeze(1)).view( | |
1, 1, self.unfolds[k].kernel_size[0], self.unfolds[k].kernel_size[1], -1).permute(0, 4, 2, 3, 1).contiguous().\ | |
view(nWh*nWw // stride // stride, -1, 1) | |
if k > 0: | |
valid_ind_unfold_k = getattr(self, "valid_ind_unfold_{}".format(k)) | |
unfolded_mask = unfolded_mask[:, valid_ind_unfold_k] | |
x_window_masks = unfolded_mask.flatten(1).unsqueeze(0) | |
x_window_masks = x_window_masks.masked_fill(x_window_masks == 0, float(-100.0)).masked_fill(x_window_masks > 0, float(0.0)) | |
mask_all[k+1] = x_window_masks | |
# generate k and v for pooled windows | |
qkv_pooled = self.qkv(x_window_pooled).reshape(B, nWh, nWw, 3, C).permute(3, 0, 4, 1, 2).contiguous() | |
k_pooled_k, v_pooled_k = qkv_pooled[1], qkv_pooled[2] # B, C, nWh, nWw | |
(k_pooled_k, v_pooled_k) = map( | |
lambda t: self.unfolds[k](t).view( | |
B, C, self.unfolds[k].kernel_size[0], self.unfolds[k].kernel_size[1], -1).permute(0, 4, 2, 3, 1).contiguous().\ | |
view(-1, self.unfolds[k].kernel_size[0]*self.unfolds[k].kernel_size[1], self.num_heads, C // self.num_heads).transpose(1, 2), | |
(k_pooled_k, v_pooled_k) # (B x (nH*nW)) x nHeads x (unfold_wsize x unfold_wsize) x head_dim | |
) | |
if k > 0: | |
(k_pooled_k, v_pooled_k) = map( | |
lambda t: t[:, :, valid_ind_unfold_k], (k_pooled_k, v_pooled_k) | |
) | |
k_pooled += [k_pooled_k] | |
v_pooled += [v_pooled_k] | |
k_all = torch.cat([k_rolled] + k_pooled, 2) | |
v_all = torch.cat([v_rolled] + v_pooled, 2) | |
else: | |
k_all = k_rolled | |
v_all = v_rolled | |
N = k_all.shape[-2] | |
q_windows = q_windows * self.scale | |
attn = (q_windows @ k_all.transpose(-2, -1)) # B*nW, nHead, window_size*window_size, focal_window_size*focal_window_size | |
window_area = self.window_size[0] * self.window_size[1] | |
window_area_rolled = k_rolled.shape[2] | |
# add relative position bias for tokens inside window | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn[:, :, :window_area, :window_area] = attn[:, :, :window_area, :window_area] + relative_position_bias.unsqueeze(0) | |
# add relative position bias for patches inside a window | |
if self.expand_size > 0 and self.focal_level > 0: | |
attn[:, :, :window_area, window_area:window_area_rolled] = attn[:, :, :window_area, window_area:window_area_rolled] + self.relative_position_bias_table_to_neighbors | |
if self.pool_method != "none" and self.focal_level > 1: | |
# add relative position bias for different windows in an image | |
offset = window_area_rolled | |
for k in range(self.focal_level-1): | |
# add relative position bias | |
relative_position_index_k = getattr(self, 'relative_position_index_{}'.format(k)) | |
relative_position_bias_to_windows = self.relative_position_bias_table_to_windows[k][:, relative_position_index_k.view(-1)].view( | |
-1, self.window_size[0] * self.window_size[1], (self.focal_window+2**k-1)**2, | |
) # nH, NWh*NWw,focal_region*focal_region | |
attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] = \ | |
attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] + relative_position_bias_to_windows.unsqueeze(0) | |
# add attentional mask | |
if mask_all[k+1] is not None: | |
attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] = \ | |
attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] + \ | |
mask_all[k+1][:, :, None, None, :].repeat(attn.shape[0] // mask_all[k+1].shape[1], 1, 1, 1, 1).view(-1, 1, 1, mask_all[k+1].shape[-1]) | |
offset += (self.focal_window+2**k-1)**2 | |
if mask_all[0] is not None: | |
nW = mask_all[0].shape[0] | |
attn = attn.view(attn.shape[0] // nW, nW, self.num_heads, window_area, N) | |
attn[:, :, :, :, :window_area] = attn[:, :, :, :, :window_area] + mask_all[0][None, :, None, :, :] | |
attn = attn.view(-1, self.num_heads, window_area, N) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v_all).transpose(1, 2).reshape(attn.shape[0], window_area, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def extra_repr(self) -> str: | |
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' | |
def flops(self, N, window_size, unfold_size): | |
# calculate flops for 1 window with token length of N | |
flops = 0 | |
# qkv = self.qkv(x) | |
flops += N * self.dim * 3 * self.dim | |
# attn = (q @ k.transpose(-2, -1)) | |
flops += self.num_heads * N * (self.dim // self.num_heads) * N | |
if self.pool_method != "none" and self.focal_level > 1: | |
flops += self.num_heads * N * (self.dim // self.num_heads) * (unfold_size * unfold_size) | |
if self.expand_size > 0 and self.focal_level > 0: | |
flops += self.num_heads * N * (self.dim // self.num_heads) * ((window_size + 2*self.expand_size)**2-window_size**2) | |
# x = (attn @ v) | |
flops += self.num_heads * N * N * (self.dim // self.num_heads) | |
if self.pool_method != "none" and self.focal_level > 1: | |
flops += self.num_heads * N * (self.dim // self.num_heads) * (unfold_size * unfold_size) | |
if self.expand_size > 0 and self.focal_level > 0: | |
flops += self.num_heads * N * (self.dim // self.num_heads) * ((window_size + 2*self.expand_size)**2-window_size**2) | |
# x = self.proj(x) | |
flops += N * self.dim * self.dim | |
return | |