dafajudin commited on
Commit
f38b92d
·
1 Parent(s): b59d7ee
Files changed (1) hide show
  1. app.py +96 -0
app.py CHANGED
@@ -1,3 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
 
1
+ # import gradio as gr
2
+ # from transformers import pipeline
3
+
4
+ # # Load the Visual QA model
5
+ # generator = pipeline("visual-question-answering", model="jihadzakki/blip1-medvqa")
6
+
7
+ # def format_answer(image, question, history):
8
+ # try:
9
+ # result = generator(image, question, max_new_tokens=50)
10
+ # predicted_answer = result[0].get('answer', 'No answer found')
11
+ # history.append((image, f"Question: {question} | Answer: {predicted_answer}"))
12
+
13
+ # return f"Predicted Answer: {predicted_answer}", history
14
+ # except Exception as e:
15
+ # return f"Error: {str(e)}", history
16
+
17
+ # def switch_theme(mode):
18
+ # if mode == "Light Mode":
19
+ # return gr.themes.Default()
20
+ # else:
21
+ # return gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.orange)
22
+
23
+ # def save_feedback(feedback):
24
+ # return "Thank you for your feedback!"
25
+
26
+ # def display_history(history):
27
+ # log_entries = []
28
+ # for img, text in history:
29
+ # log_entries.append((img, text))
30
+ # return log_entries
31
+
32
+ # # Build the Visual QA application using Gradio with improvements
33
+ # with gr.Blocks(
34
+ # theme=gr.themes.Soft(
35
+ # font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"],
36
+ # primary_hue=gr.themes.colors.blue,
37
+ # secondary_hue=gr.themes.colors.red,
38
+ # )
39
+ # ) as VisualQAApp:
40
+ # gr.Markdown("# Visual Question Answering using BLIP Model", elem_classes="title")
41
+
42
+ # with gr.Row():
43
+ # with gr.Column():
44
+ # image_input = gr.Image(label="Upload image", type="pil")
45
+ # question_input = gr.Textbox(show_label=False, placeholder="Enter your question here...")
46
+ # submit_button = gr.Button("Submit", variant="primary")
47
+
48
+ # with gr.Column():
49
+ # answer_output = gr.Textbox(label="Result Prediction")
50
+
51
+ # history_state = gr.State([]) # Initialize the history state
52
+
53
+ # submit_button.click(
54
+ # format_answer,
55
+ # inputs=[image_input, question_input, history_state],
56
+ # outputs=[answer_output, history_state],
57
+ # show_progress=True
58
+ # )
59
+
60
+ # with gr.Row():
61
+ # history_gallery = gr.Gallery(label="History Log", elem_id="history_log")
62
+ # submit_button.click(
63
+ # display_history,
64
+ # inputs=[history_state],
65
+ # outputs=[history_gallery]
66
+ # )
67
+
68
+ # with gr.Accordion("Help", open=False):
69
+ # gr.Markdown("**Upload image**: Select the chest X-ray image you want to analyze.")
70
+ # gr.Markdown("**Enter your question**: Type the question you have about the image, such as 'Is there any sign of pneumonia?'")
71
+ # gr.Markdown("**Submit**: Click the submit button to get the prediction from the model.")
72
+
73
+ # with gr.Accordion("User Preferences", open=False):
74
+ # gr.Markdown("**Mode**: Choose between light and dark mode for your comfort.")
75
+ # mode_selector = gr.Radio(choices=["Light Mode", "Dark Mode"], label="Select Mode")
76
+ # apply_theme_button = gr.Button("Apply Theme")
77
+
78
+ # apply_theme_button.click(
79
+ # switch_theme,
80
+ # inputs=[mode_selector],
81
+ # outputs=[],
82
+ # )
83
+
84
+ # with gr.Accordion("Feedback", open=False):
85
+ # gr.Markdown("**We value your feedback!** Please provide any feedback you have about this application.")
86
+ # feedback_input = gr.Textbox(label="Feedback", lines=4)
87
+ # submit_feedback_button = gr.Button("Submit Feedback")
88
+
89
+ # submit_feedback_button.click(
90
+ # save_feedback,
91
+ # inputs=[feedback_input],
92
+ # outputs=[feedback_input]
93
+ # )
94
+
95
+ # VisualQAApp.launch(share=True)
96
+
97
  import gradio as gr
98
  from transformers import pipeline
99