Spaces:
Sleeping
Sleeping
File size: 16,742 Bytes
11e4790 c567be4 9e3b21a 6530075 079aa3a b7fa139 3c4e755 e9909ed 7ed5900 02dd3ba 3310ad5 7ed5900 e9909ed cf25313 e9909ed a931b41 e9909ed 3c4e755 11e4790 2320eeb 9e3b21a a931b41 7ed5900 66d6a91 7ed5900 a931b41 2fd09c9 a931b41 1ae05ec a48473e a931b41 9e3b21a 8414f72 c567be4 8414f72 c567be4 f4b741f ef94623 e8ac9fc ef94623 30e87ad 6777045 30e87ad 6777045 30e87ad 915c63d c567be4 e950bce a11ae70 e950bce a11ae70 e950bce cf25313 c567be4 52d5702 cf25313 a931b41 7ed5900 a931b41 a48473e 7ed5900 a931b41 aae1ef7 474b2c8 a931b41 1ae05ec a931b41 a48473e cf25313 52d5702 62fea27 938aee2 a11ae70 b6d28cd 938aee2 e950bce a41dfa9 6a6dfe0 a11ae70 3c4e755 b6d28cd a11ae70 b6d28cd 6a6dfe0 a6ad75a 51478fd a41dfa9 52d5702 b6d28cd a41dfa9 9b769a8 a41dfa9 c567be4 3c4e755 a931b41 3c4e755 db681b1 3c4e755 a11ae70 c567be4 6777045 8b6845f 6777045 bbc9832 6777045 915c63d 6777045 ef94623 26894bc d8ab087 e6657c6 d8ab087 e6657c6 d8ab087 bbc9832 d8ab087 28e9de2 9d0ff0e d8ab087 9d0ff0e 61e0e54 26894bc 4749834 ef94623 39c5160 ef94623 9e3b21a bbc9832 9e3b21a ef94623 9e3b21a ef94623 9e3b21a b7653fb c567be4 24ff085 d476719 9e3b21a ef94623 a41dfa9 b6d28cd 3eafd89 51d81e0 3eafd89 3e13a5c 51d81e0 3eafd89 61e0e54 915c63d d476719 6777045 d476719 915c63d 6777045 915c63d c567be4 b6d28cd c567be4 26894bc 4610447 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import gradio as gr
import pandas as pd
import requests
from bs4 import BeautifulSoup
from docx import Document
import os
from openai import OpenAI
import json
from youtube_transcript_api import YouTubeTranscriptApi
from moviepy.editor import VideoFileClip
from pytube import YouTube
import os
from google.oauth2 import service_account
from googleapiclient.discovery import build
from googleapiclient.http import MediaFileUpload
from googleapiclient.http import MediaIoBaseUpload
import io
from urllib.parse import urlparse, parse_qs
# 假设您的环境变量或Secret的名称是GOOGLE_APPLICATION_CREDENTIALS_JSON
# credentials_json_string = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
# credentials_dict = json.loads(credentials_json_string)
# SCOPES = ['https://www.googleapis.com/auth/drive']
# credentials = service_account.Credentials.from_service_account_info(
# credentials_dict, scopes=SCOPES)
# service = build('drive', 'v3', credentials=credentials)
# # 列出 Google Drive 上的前10個文件
# results = service.files().list(pageSize=10, fields="nextPageToken, files(id, name)").execute()
# items = results.get('files', [])
# if not items:
# print('No files found.')
# else:
# print("=====Google Drive 上的前10個文件=====")
# print('Files:')
# for item in items:
# print(u'{0} ({1})'.format(item['name'], item['id']))
OUTPUT_PATH = 'videos'
OPEN_AI_KEY = os.getenv("OPEN_AI_KEY")
client = OpenAI(api_key=OPEN_AI_KEY)
# 初始化Google Drive服务
def init_drive_service():
credentials_json_string = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
credentials_dict = json.loads(credentials_json_string)
SCOPES = ['https://www.googleapis.com/auth/drive']
credentials = service_account.Credentials.from_service_account_info(
credentials_dict, scopes=SCOPES)
service = build('drive', 'v3', credentials=credentials)
return service
def create_folder_if_not_exists(service, folder_name, parent_id):
print("检查是否存在特定名称的文件夹,如果不存在则创建")
query = f"mimeType='application/vnd.google-apps.folder' and name='{folder_name}' and '{parent_id}' in parents and trashed=false"
response = service.files().list(q=query, spaces='drive', fields="files(id, name)").execute()
folders = response.get('files', [])
if not folders:
# 文件夹不存在,创建新文件夹
file_metadata = {
'name': folder_name,
'mimeType': 'application/vnd.google-apps.folder',
'parents': [parent_id]
}
folder = service.files().create(body=file_metadata, fields='id').execute()
return folder.get('id')
else:
# 文件夹已存在
return folders[0]['id']
# 检查Google Drive上是否存在文件
def check_file_exists(service, folder_name, file_name):
query = f"name = '{file_name}' and '{folder_name}' in parents and trashed = false"
response = service.files().list(q=query).execute()
files = response.get('files', [])
return len(files) > 0, files[0]['id'] if files else None
def upload_to_drive(service, file_name, folder_id, content):
print("上传文本内容到Google Drive指定的文件夹中")
# 如果您的内容是字符串(文本),请使用io.StringIO
# 对于二进制内容,请使用io.BytesIO
file_metadata = {'name': file_name, 'parents': [folder_id]}
# 这里我们假定content是文本,因此使用io.StringIO
media = MediaFileUpload(io.StringIO(content), mimetype='text/plain')
service.files().create(body=file_metadata, media_body=media, fields='id').execute()
def upload_content_directly(service, file_name, folder_id, content):
"""
直接将内容上传到Google Drive中的新文件。
"""
file_metadata = {'name': file_name, 'parents': [folder_id]}
# 使用io.StringIO为文本内容创建一个内存中的文件对象
fh = io.BytesIO(content.encode('utf-8'))
media = MediaIoBaseUpload(fh, mimetype='text/plain', resumable=True)
# 执行上传
service.files().create(body=file_metadata, media_body=media, fields='id').execute()
def download_file_as_string(service, file_id):
"""
从Google Drive下载文件并将其作为字符串返回。
"""
request = service.files().get_media(fileId=file_id)
fh = io.BytesIO()
downloader = MediaIoBaseDownload(fh, request)
done = False
while done is False:
status, done = downloader.next_chunk()
fh.seek(0)
content = fh.read().decode('utf-8')
return content
def process_file(file):
# 读取文件
if file.name.endswith('.csv'):
df = pd.read_csv(file)
text = df_to_text(df)
elif file.name.endswith('.xlsx'):
df = pd.read_excel(file)
text = df_to_text(df)
elif file.name.endswith('.docx'):
text = docx_to_text(file)
else:
raise ValueError("Unsupported file type")
df_string = df.to_string()
# 宜蘭:移除@XX@符号 to |
df_string = df_string.replace("@XX@", "|")
# 根据上传的文件内容生成问题
questions = generate_questions(df_string)
df_summarise = generate_df_summarise(df_string)
# 返回按钮文本和 DataFrame 字符串
return questions[0] if len(questions) > 0 else "", \
questions[1] if len(questions) > 1 else "", \
questions[2] if len(questions) > 2 else "", \
df_summarise, \
df_string
def df_to_text(df):
# 将 DataFrame 转换为纯文本
return df.to_string()
def docx_to_text(file):
# 将 Word 文档转换为纯文本
doc = Document(file)
return "\n".join([para.text for para in doc.paragraphs])
def format_seconds_to_time(seconds):
"""将秒数格式化为 时:分:秒 的形式"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
return f"{hours:02}:{minutes:02}:{seconds:02}"
def extract_youtube_id(url):
parsed_url = urlparse(url)
if "youtube.com" in parsed_url.netloc:
# 对于标准链接,视频ID在查询参数'v'中
query_params = parse_qs(parsed_url.query)
return query_params.get("v")[0] if "v" in query_params else None
elif "youtu.be" in parsed_url.netloc:
# 对于短链接,视频ID是路径的一部分
return parsed_url.path.lstrip('/')
else:
return None
def process_youtube_link(link):
# 使用 YouTube API 获取逐字稿
# 假设您已经获取了 YouTube 视频的逐字稿并存储在变量 `transcript` 中
video_id = extract_youtube_id(link)
service = init_drive_service()
parent_folder_id = '1GgI4YVs0KckwStVQkLa1NZ8IpaEMurkL' # youtube逐字稿圖檔的ID
# 检查/创建视频ID命名的子文件夹
folder_id = create_folder_if_not_exists(service, video_id, parent_folder_id)
file_name = f"{video_id}_transcript.txt"
# 检查逐字稿是否存在
transcript = None
exists, file_id = check_file_exists(service, folder_id, file_name)
if not exists:
# 获取逐字稿
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['zh-TW'])
transcript_text = json.dumps(transcript, ensure_ascii=False, indent=2)
# 上传到Google Drive
upload_content_directly(service, file_name, folder_id, transcript_text)
print("逐字稿已上传到Google Drive")
else:
print("逐字稿已存在于Google Drive中")
transcript_text = download_file_as_string(service, file_id)
transcript = json.loads(transcript_text)
# 基于逐字稿生成其他所需的输出
questions = generate_questions(transcript)
df_summarise = generate_df_summarise(transcript)
formatted_transcript = []
screenshot_paths = []
for entry in transcript:
start_time = format_seconds_to_time(entry['start'])
end_time = format_seconds_to_time(entry['start'] + entry['duration'])
embed_url = get_embedded_youtube_link(video_id, entry['start'])
# 截圖
screenshot_path = screenshot_youtube_video(video_id, entry['start'])
line = {
"start_time": start_time,
"end_time": end_time,
"text": entry['text'],
"embed_url": embed_url,
"screenshot_path": screenshot_path
}
formatted_transcript.append(line)
screenshot_paths.append(screenshot_path)
html_content = format_transcript_to_html(formatted_transcript)
print("=====html_content=====")
print(html_content)
print("=====html_content=====")
# 确保返回与 UI 组件预期匹配的输出
return questions[0] if len(questions) > 0 else "", \
questions[1] if len(questions) > 1 else "", \
questions[2] if len(questions) > 2 else "", \
df_summarise, \
html_content, \
screenshot_paths,
def format_transcript_to_html(formatted_transcript):
html_content = ""
for entry in formatted_transcript:
html_content += f"<h3>{entry['start_time']} - {entry['end_time']}</h3>"
html_content += f"<p>{entry['text']}</p>"
html_content += f"<img src='{entry['screenshot_path']}' width='500px' />"
return html_content
def get_embedded_youtube_link(video_id, start_time):
embed_url = f"https://www.youtube.com/embed/{video_id}?start={start_time}&autoplay=1"
return embed_url
def download_youtube_video(youtube_id, output_path=OUTPUT_PATH):
# Construct the full YouTube URL
youtube_url = f'https://www.youtube.com/watch?v={youtube_id}'
# Create the output directory if it doesn't exist
if not os.path.exists(output_path):
os.makedirs(output_path)
# Download the video
yt = YouTube(youtube_url)
video_stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
video_stream.download(output_path=output_path, filename=youtube_id+".mp4")
print(f"Video downloaded successfully: {output_path}/{youtube_id}.mp4")
def screenshot_youtube_video(youtube_id, snapshot_sec):
# 先下載 video
download_youtube_video(youtube_id, output_path=OUTPUT_PATH)
# 这里假设视频已经在适当的位置
video_path = f'{OUTPUT_PATH}/{youtube_id}.mp4'
# Load the video and take a screenshot
with VideoFileClip(video_path) as video:
screenshot_path = f'{OUTPUT_PATH}/{youtube_id}_{snapshot_sec}.jpg'
video.save_frame(screenshot_path, snapshot_sec)
return screenshot_path
def get_screenshot_from_video(video_link, start_time):
# 实现从视频中提取帧的逻辑
# 由于这需要服务器端处理,你可能需要一种方法来下载视频,
# 并使用 ffmpeg 或类似工具提取特定时间点的帧
# 这里只是一个示意性的函数实现
screenshot_url = f"[逻辑以提取视频 {video_link} 在 {start_time} 秒时的截图]"
return screenshot_url
def process_web_link(link):
# 抓取和解析网页内容
response = requests.get(link)
soup = BeautifulSoup(response.content, 'html.parser')
return soup.get_text()
def generate_df_summarise(df_string):
# 使用 OpenAI 生成基于上传数据的问题
sys_content = "你是一個資料分析師,服務對象為老師,請精讀資料,使用 zh-TW"
user_content = f"請根據 {df_string},大概描述這張表的欄位敘述、資料樣態與資料分析,告訴老師這張表的意義,以及可能的結論與對應方式"
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content}
]
print("=====messages=====")
print(messages)
print("=====messages=====")
request_payload = {
"model": "gpt-4-1106-preview",
"messages": messages,
"max_tokens": 4000,
}
response = client.chat.completions.create(**request_payload)
df_summarise = response.choices[0].message.content.strip()
print("=====df_summarise=====")
print(df_summarise)
print("=====df_summarise=====")
return df_summarise
def generate_questions(df_string):
# 使用 OpenAI 生成基于上传数据的问题
sys_content = "你是一個資料分析師,user為老師,請精讀資料,並用既有資料為本質猜測用戶可能會問的問題,使用 zh-TW"
user_content = f"請根據 {df_string} 生成三個問題,並用 JSON 格式返回 questions:[q1, q2, q3]"
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content}
]
response_format = { "type": "json_object" }
print("=====messages=====")
print(messages)
print("=====messages=====")
request_payload = {
"model": "gpt-4-1106-preview",
"messages": messages,
"max_tokens": 4000,
"response_format": response_format
}
response = client.chat.completions.create(**request_payload)
questions = json.loads(response.choices[0].message.content)["questions"]
print("=====json_response=====")
print(questions)
print("=====json_response=====")
return questions
def send_question(question, df_string_output, chat_history):
# 当问题按钮被点击时调用此函数
return respond(question, df_string_output, chat_history)
def respond(user_message, df_string_output, chat_history):
print("=== 變數:user_message ===")
print(user_message)
print("=== 變數:chat_history ===")
print(chat_history)
sys_content = f"你是一個資料分析師,請用 {df_string_output} 為資料進行對話,使用 zh-TW"
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_message}
]
print("=====messages=====")
print(messages)
print("=====messages=====")
request_payload = {
"model": "gpt-4-1106-preview",
"messages": messages,
"max_tokens": 4000 # 設定一個較大的值,可根據需要調整
}
response = client.chat.completions.create(**request_payload)
print(response)
response_text = response.choices[0].message.content.strip()
# 更新聊天历史
new_chat_history = (user_message, response_text)
if chat_history is None:
chat_history = [new_chat_history]
else:
chat_history.append(new_chat_history)
# 返回聊天历史和空字符串清空输入框
return "", chat_history
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
file_upload = gr.File(label="Upload your CSV or Word file")
youtube_link = gr.Textbox(label="Enter YouTube Link")
web_link = gr.Textbox(label="Enter Web Page Link")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Message")
send_button = gr.Button("Send")
with gr.Column():
with gr.Tab("YouTube Transcript and Video"):
transcript_html = gr.HTML(label="YouTube Transcript and Video")
with gr.Tab("images"):
gallery = gr.Gallery(label="截图")
with gr.Tab("資料本文"):
df_string_output = gr.Textbox()
with gr.Tab("資料摘要"):
gr.Markdown("## 這是什麼樣的資料?")
df_summarise = gr.Textbox(container=True, show_copy_button=True, label="資料本文", lines=40)
with gr.Tab("常用問題"):
gr.Markdown("## 常用問題")
btn_1 = gr.Button()
btn_2 = gr.Button()
btn_3 = gr.Button()
send_button.click(
respond,
inputs=[msg, df_string_output, chatbot],
outputs=[msg, chatbot]
)
# 连接按钮点击事件
btn_1.click(respond, inputs=[btn_1, df_string_output, chatbot], outputs=[msg, chatbot])
btn_2.click(respond, inputs=[btn_2, df_string_output, chatbot], outputs=[msg, chatbot])
btn_3.click(respond, inputs=[btn_3, df_string_output, chatbot], outputs=[msg, chatbot])
# file_upload.change(process_file, inputs=file_upload, outputs=df_string_output)
file_upload.change(process_file, inputs=file_upload, outputs=[btn_1, btn_2, btn_3, df_summarise, df_string_output])
# 当输入 YouTube 链接时触发
youtube_link.change(process_youtube_link, inputs=youtube_link, outputs=[btn_1, btn_2, btn_3, df_summarise, transcript_html, gallery])
# 当输入网页链接时触发
web_link.change(process_web_link, inputs=web_link, outputs=[btn_1, btn_2, btn_3, df_summarise, df_string_output])
demo.launch(allowed_paths=["videos"])
|