Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import requests | |
class Chatbot: | |
def __init__(self, config): | |
self.video_id = config.get('video_id') | |
self.content_subject = config.get('content_subject') | |
self.content_grade = config.get('content_grade') | |
self.jutor_chat_key = config.get('jutor_chat_key') | |
self.transcript_text = self.get_transcript_text(config.get('transcript')) | |
self.key_moments_text = self.get_key_moments_text(config.get('key_moments')) | |
self.ai_model_name = config.get('ai_model_name') | |
self.ai_client = config.get('ai_client') | |
self.instructions = config.get('instructions') | |
def get_transcript_text(self, transcript_data): | |
if isinstance(transcript_data, str): | |
transcript_json = json.loads(transcript_data) | |
else: | |
transcript_json = transcript_data | |
for entry in transcript_json: | |
entry.pop('end_time', None) | |
transcript_text = json.dumps(transcript_json, ensure_ascii=False) | |
return transcript_text | |
def get_key_moments_text(self, key_moments_data): | |
if isinstance(key_moments_data, str): | |
key_moments_json = json.loads(key_moments_data) | |
else: | |
key_moments_json = key_moments_data | |
# key_moments_json remove images | |
for moment in key_moments_json: | |
moment.pop('images', None) | |
moment.pop('end', None) | |
moment.pop('transcript', None) | |
key_moments_text = json.dumps(key_moments_json, ensure_ascii=False) | |
return key_moments_text | |
def chat(self, user_message, chat_history): | |
try: | |
messages = self.prepare_messages(chat_history, user_message) | |
system_prompt = self.instructions | |
service_type = self.ai_model_name | |
response_text = self.chat_with_service(service_type, system_prompt, messages) | |
except Exception as e: | |
print(f"Error: {e}") | |
response_text = "學習精靈有點累,請稍後再試!" | |
return response_text | |
def prepare_messages(self, chat_history, user_message): | |
messages = [] | |
if chat_history is not None: | |
if len(chat_history) > 10: | |
chat_history = chat_history[-10:] | |
for user_msg, assistant_msg in chat_history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
if user_message: | |
user_message += "/n (請一定要用繁體中文回答 zh-TW,並用台灣人的禮貌口語表達,回答時不要特別說明這是台灣人的語氣,不要提到「台灣腔」,不用提到「逐字稿」這個詞,用「內容」代替),回答時如果有用到數學式,請用數學符號代替純文字(Latex 用 $ 字號 render)" | |
messages.append({"role": "user", "content": user_message}) | |
return messages | |
def chat_with_service(self, service_type, system_prompt, messages): | |
if service_type == 'openai': | |
return self.chat_with_jutor(system_prompt, messages) | |
elif service_type == 'groq_llama3': | |
return self.chat_with_groq(service_type, system_prompt, messages) | |
elif service_type == 'groq_mixtral': | |
return self.chat_with_groq(service_type, system_prompt, messages) | |
elif service_type == 'claude3': | |
return self.chat_with_claude3(system_prompt, messages) | |
else: | |
raise gr.Error("不支持的服务类型") | |
def chat_with_jutor(self, system_prompt, messages): | |
messages.insert(0, {"role": "system", "content": system_prompt}) | |
api_endpoint = "https://ci-live-feat-video-ai-dot-junyiacademy.appspot.com/api/v2/jutor/hf-chat" | |
headers = { | |
"Content-Type": "application/json", | |
"x-api-key": self.jutor_chat_key, | |
} | |
model = "gpt-4o" | |
print("======model======") | |
print(model) | |
# model = "gpt-3.5-turbo-0125" | |
data = { | |
"data": { | |
"messages": messages, | |
"max_tokens": 512, | |
"temperature": 0.9, | |
"model": model, | |
"stream": False, | |
} | |
} | |
response = requests.post(api_endpoint, headers=headers, data=json.dumps(data)) | |
response_data = response.json() | |
response_completion = response_data['data']['choices'][0]['message']['content'].strip() | |
return response_completion | |
def chat_with_groq(self, model_name, system_prompt, messages): | |
# system_prompt insert to messages 的最前面 {"role": "system", "content": system_prompt} | |
messages.insert(0, {"role": "system", "content": system_prompt}) | |
model_name_dict = { | |
"groq_llama3": "llama-3.1-70b-versatile", | |
"groq_mixtral": "mixtral-8x7b-32768" | |
} | |
model = model_name_dict.get(model_name) | |
print("======model======") | |
print(model) | |
request_payload = { | |
"model": model, | |
"messages": messages, | |
"max_tokens": 500 # 設定一個較大的值,可根據需要調整 | |
} | |
groq_client = self.ai_client | |
response = groq_client.chat.completions.create(**request_payload) | |
response_completion = response.choices[0].message.content.strip() | |
return response_completion | |
def chat_with_claude3(self, system_prompt, messages): | |
if not system_prompt.strip(): | |
raise ValueError("System prompt cannot be empty") | |
model_id = "anthropic.claude-3-sonnet-20240229-v1:0" | |
# model_id = "anthropic.claude-3-haiku-20240307-v1:0" | |
print("======model_id======") | |
print(model_id) | |
kwargs = { | |
"modelId": model_id, | |
"contentType": "application/json", | |
"accept": "application/json", | |
"body": json.dumps({ | |
"anthropic_version": "bedrock-2023-05-31", | |
"max_tokens": 500, | |
"system": system_prompt, | |
"messages": messages | |
}) | |
} | |
# 建立 message API,讀取回應 | |
bedrock_client = self.ai_client | |
response = bedrock_client.invoke_model(**kwargs) | |
response_body = json.loads(response.get('body').read()) | |
response_completion = response_body.get('content')[0].get('text').strip() | |
return response_completion | |