Spaces:
Running
Running
import itertools | |
from dataclasses import dataclass | |
from typing import Optional | |
import numpy as np | |
import pytorch_lightning as pl | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ..util import instantiate_from_config | |
from .omnigen_enc_dec import Decoder as omnigen_Mag_Decoder | |
from .omnigen_enc_dec import Encoder as omnigen_Mag_Encoder | |
class DiagonalGaussianDistribution: | |
def __init__( | |
self, | |
mean: torch.Tensor, | |
logvar: torch.Tensor, | |
deterministic: bool = False, | |
): | |
self.mean = mean | |
self.logvar = torch.clamp(logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
if deterministic: | |
self.var = self.std = torch.zeros_like(self.mean) | |
else: | |
self.std = torch.exp(0.5 * self.logvar) | |
self.var = torch.exp(self.logvar) | |
def sample(self, generator = None) -> torch.FloatTensor: | |
x = torch.randn( | |
self.mean.shape, | |
generator=generator, | |
device=self.mean.device, | |
dtype=self.mean.dtype, | |
) | |
return self.mean + self.std * x | |
def mode(self): | |
return self.mean | |
def kl(self, other: Optional["DiagonalGaussianDistribution"] = None) -> torch.Tensor: | |
dims = list(range(1, self.mean.ndim)) | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
else: | |
if other is None: | |
return 0.5 * torch.sum( | |
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, | |
dim=dims, | |
) | |
else: | |
return 0.5 * torch.sum( | |
torch.pow(self.mean - other.mean, 2) / other.var | |
+ self.var / other.var | |
- 1.0 | |
- self.logvar | |
+ other.logvar, | |
dim=dims, | |
) | |
def nll(self, sample: torch.Tensor) -> torch.Tensor: | |
dims = list(range(1, self.mean.ndim)) | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
logtwopi = np.log(2.0 * np.pi) | |
return 0.5 * torch.sum( | |
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, | |
dim=dims, | |
) | |
class EncoderOutput: | |
latent_dist: DiagonalGaussianDistribution | |
class DecoderOutput: | |
sample: torch.Tensor | |
def str_eval(item): | |
if type(item) == str: | |
return eval(item) | |
else: | |
return item | |
class AutoencoderKLMagvit_fromOmnigen(pl.LightningModule): | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
ch = 128, | |
ch_mult = [ 1,2,4,4 ], | |
use_gc_blocks = None, | |
down_block_types: tuple = None, | |
up_block_types: tuple = None, | |
mid_block_type: str = "MidBlock3D", | |
mid_block_use_attention: bool = True, | |
mid_block_attention_type: str = "3d", | |
mid_block_num_attention_heads: int = 1, | |
layers_per_block: int = 2, | |
act_fn: str = "silu", | |
num_attention_heads: int = 1, | |
latent_channels: int = 4, | |
norm_num_groups: int = 32, | |
image_key="image", | |
monitor=None, | |
ckpt_path=None, | |
lossconfig=None, | |
slice_compression_vae=False, | |
mini_batch_encoder=9, | |
mini_batch_decoder=3, | |
train_decoder_only=False, | |
): | |
super().__init__() | |
self.image_key = image_key | |
down_block_types = str_eval(down_block_types) | |
up_block_types = str_eval(up_block_types) | |
self.encoder = omnigen_Mag_Encoder( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
ch = ch, | |
ch_mult = ch_mult, | |
use_gc_blocks=use_gc_blocks, | |
mid_block_type=mid_block_type, | |
mid_block_use_attention=mid_block_use_attention, | |
mid_block_attention_type=mid_block_attention_type, | |
mid_block_num_attention_heads=mid_block_num_attention_heads, | |
layers_per_block=layers_per_block, | |
norm_num_groups=norm_num_groups, | |
act_fn=act_fn, | |
num_attention_heads=num_attention_heads, | |
double_z=True, | |
slice_compression_vae=slice_compression_vae, | |
mini_batch_encoder=mini_batch_encoder, | |
) | |
self.decoder = omnigen_Mag_Decoder( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
ch = ch, | |
ch_mult = ch_mult, | |
use_gc_blocks=use_gc_blocks, | |
mid_block_type=mid_block_type, | |
mid_block_use_attention=mid_block_use_attention, | |
mid_block_attention_type=mid_block_attention_type, | |
mid_block_num_attention_heads=mid_block_num_attention_heads, | |
layers_per_block=layers_per_block, | |
norm_num_groups=norm_num_groups, | |
act_fn=act_fn, | |
num_attention_heads=num_attention_heads, | |
slice_compression_vae=slice_compression_vae, | |
mini_batch_decoder=mini_batch_decoder, | |
) | |
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1) | |
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1) | |
self.mini_batch_encoder = mini_batch_encoder | |
self.mini_batch_decoder = mini_batch_decoder | |
self.train_decoder_only = train_decoder_only | |
if train_decoder_only: | |
self.encoder.requires_grad_(False) | |
self.quant_conv.requires_grad_(False) | |
if monitor is not None: | |
self.monitor = monitor | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys="loss") | |
if lossconfig is not None: | |
self.loss = instantiate_from_config(lossconfig) | |
def init_from_ckpt(self, path, ignore_keys=list()): | |
if path.endswith("safetensors"): | |
from safetensors.torch import load_file, safe_open | |
sd = load_file(path) | |
else: | |
sd = torch.load(path, map_location="cpu") | |
if "state_dict" in list(sd.keys()): | |
sd = sd["state_dict"] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
self.load_state_dict(sd, strict=False) # loss.item can be ignored successfully | |
print(f"Restored from {path}") | |
def encode(self, x: torch.Tensor) -> EncoderOutput: | |
h = self.encoder(x) | |
moments: torch.Tensor = self.quant_conv(h) | |
mean, logvar = moments.chunk(2, dim=1) | |
posterior = DiagonalGaussianDistribution(mean, logvar) | |
# return EncoderOutput(latent_dist=posterior) | |
return posterior | |
def decode(self, z: torch.Tensor) -> DecoderOutput: | |
z = self.post_quant_conv(z) | |
decoded = self.decoder(z) | |
# return DecoderOutput(sample=decoded) | |
return decoded | |
def forward(self, input, sample_posterior=True): | |
if input.ndim==4: | |
input = input.unsqueeze(2) | |
posterior = self.encode(input) | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
# print("stt latent shape", z.shape) | |
dec = self.decode(z) | |
return dec, posterior | |
def get_input(self, batch, k): | |
x = batch[k] | |
if x.ndim==5: | |
x = x.permute(0, 4, 1, 2, 3).to(memory_format=torch.contiguous_format).float() | |
return x | |
if len(x.shape) == 3: | |
x = x[..., None] | |
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() | |
return x | |
def training_step(self, batch, batch_idx, optimizer_idx): | |
# tic = time.time() | |
inputs = self.get_input(batch, self.image_key) | |
# print(f"get_input time {time.time() - tic}") | |
# tic = time.time() | |
reconstructions, posterior = self(inputs) | |
# print(f"model forward time {time.time() - tic}") | |
if optimizer_idx == 0: | |
# train encoder+decoder+logvar | |
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) | |
# print(f"cal loss time {time.time() - tic}") | |
return aeloss | |
if optimizer_idx == 1: | |
# train the discriminator | |
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) | |
# print(f"cal loss time {time.time() - tic}") | |
return discloss | |
def validation_step(self, batch, batch_idx): | |
with torch.no_grad(): | |
inputs = self.get_input(batch, self.image_key) | |
reconstructions, posterior = self(inputs) | |
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, | |
last_layer=self.get_last_layer(), split="val") | |
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, | |
last_layer=self.get_last_layer(), split="val") | |
self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) | |
self.log_dict(log_dict_ae) | |
self.log_dict(log_dict_disc) | |
return self.log_dict | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
if self.train_decoder_only: | |
opt_ae = torch.optim.Adam(list(self.decoder.parameters())+ | |
list(self.post_quant_conv.parameters()), | |
lr=lr, betas=(0.5, 0.9)) | |
else: | |
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ | |
list(self.decoder.parameters())+ | |
list(self.quant_conv.parameters())+ | |
list(self.post_quant_conv.parameters()), | |
lr=lr, betas=(0.5, 0.9)) | |
opt_disc = torch.optim.Adam(list(self.loss.discriminator3d.parameters()) + list(self.loss.discriminator.parameters()), | |
lr=lr, betas=(0.5, 0.9)) | |
return [opt_ae, opt_disc], [] | |
def get_last_layer(self): | |
return self.decoder.conv_out.weight | |
def log_images(self, batch, only_inputs=False, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.image_key) | |
x = x.to(self.device) | |
if not only_inputs: | |
xrec, posterior = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
x = self.to_rgb(x) | |
xrec = self.to_rgb(xrec) | |
log["samples"] = self.decode(torch.randn_like(posterior.sample())) | |
log["reconstructions"] = xrec | |
log["inputs"] = x | |
return log | |
def to_rgb(self, x): | |
assert self.image_key == "segmentation" | |
if not hasattr(self, "colorize"): | |
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
x = F.conv2d(x, weight=self.colorize) | |
x = 2.*(x-x.min())/(x.max()-x.min()) - 1. | |
return x | |