Spaces:
Running
Running
from typing import TYPE_CHECKING | |
import torch | |
import torch.nn.functional as F | |
if TYPE_CHECKING: | |
from .attention import Attention | |
class AttnProcessor: | |
r""" | |
Default processor for performing attention-related computations. | |
""" | |
def __call__( | |
self, | |
attn: "Attention", | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states, | |
attention_mask, | |
temb = None, | |
) -> torch.Tensor: | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb = None) | |
# B, L, C | |
assert hidden_states.ndim == 3, f"Hidden states must be 3-dimensional, got {hidden_states.ndim}" | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)) | |
hidden_states = hidden_states.transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
hidden_states = attn.to_out(hidden_states) | |
hidden_states = attn.dropout(hidden_states) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class AttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn: "Attention", | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states, | |
attention_mask, | |
temb = None, | |
) -> torch.FloatTensor: | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb = None) | |
# B, L, C | |
assert hidden_states.ndim == 3, f"Hidden states must be 3-dimensional, got {hidden_states.ndim}" | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.nheads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)) | |
hidden_states = hidden_states.transpose(1, 2) | |
query: torch.Tensor = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key: torch.Tensor = attn.to_k(encoder_hidden_states) | |
value: torch.Tensor = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.nheads | |
query = query.view(batch_size, -1, attn.nheads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.nheads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.nheads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, scale=attn.scale | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.nheads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
hidden_states = attn.to_out(hidden_states) | |
hidden_states = attn.dropout(hidden_states) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |