Spaces:
Running
Running
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from .activations import get_activation | |
def cast_tuple(t, length = 1): | |
return t if isinstance(t, tuple) else ((t,) * length) | |
def divisible_by(num, den): | |
return (num % den) == 0 | |
def is_odd(n): | |
return not divisible_by(n, 2) | |
class CausalConv3d(nn.Conv3d): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, # : int | tuple[int, int, int], | |
stride=1, # : int | tuple[int, int, int] = 1, | |
padding=1, # : int | tuple[int, int, int], # TODO: change it to 0. | |
dilation=1, # : int | tuple[int, int, int] = 1, | |
**kwargs, | |
): | |
kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size,) * 3 | |
assert len(kernel_size) == 3, f"Kernel size must be a 3-tuple, got {kernel_size} instead." | |
stride = stride if isinstance(stride, tuple) else (stride,) * 3 | |
assert len(stride) == 3, f"Stride must be a 3-tuple, got {stride} instead." | |
dilation = dilation if isinstance(dilation, tuple) else (dilation,) * 3 | |
assert len(dilation) == 3, f"Dilation must be a 3-tuple, got {dilation} instead." | |
t_ks, h_ks, w_ks = kernel_size | |
_, h_stride, w_stride = stride | |
t_dilation, h_dilation, w_dilation = dilation | |
t_pad = (t_ks - 1) * t_dilation | |
# TODO: align with SD | |
if padding is None: | |
h_pad = math.ceil(((h_ks - 1) * h_dilation + (1 - h_stride)) / 2) | |
w_pad = math.ceil(((w_ks - 1) * w_dilation + (1 - w_stride)) / 2) | |
elif isinstance(padding, int): | |
h_pad = w_pad = padding | |
else: | |
assert NotImplementedError | |
self.temporal_padding = t_pad | |
self.temporal_padding_origin = math.ceil(((t_ks - 1) * w_dilation + (1 - w_stride)) / 2) | |
self.padding_flag = 0 | |
super().__init__( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
padding=(0, h_pad, w_pad), | |
**kwargs, | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# x: (B, C, T, H, W) | |
if self.padding_flag == 0: | |
x = F.pad( | |
x, | |
pad=(0, 0, 0, 0, self.temporal_padding, 0), | |
mode="replicate", # TODO: check if this is necessary | |
) | |
else: | |
x = F.pad( | |
x, | |
pad=(0, 0, 0, 0, self.temporal_padding_origin, self.temporal_padding_origin), | |
) | |
return super().forward(x) | |
def set_padding_one_frame(self): | |
def _set_padding_one_frame(name, module): | |
if hasattr(module, 'padding_flag'): | |
print('Set pad mode for module[%s] type=%s' % (name, str(type(module)))) | |
module.padding_flag = 1 | |
for sub_name, sub_mod in module.named_children(): | |
_set_padding_one_frame(sub_name, sub_mod) | |
for name, module in self.named_children(): | |
_set_padding_one_frame(name, module) | |
def set_padding_more_frame(self): | |
def _set_padding_more_frame(name, module): | |
if hasattr(module, 'padding_flag'): | |
print('Set pad mode for module[%s] type=%s' % (name, str(type(module)))) | |
module.padding_flag = 2 | |
for sub_name, sub_mod in module.named_children(): | |
_set_padding_more_frame(sub_name, sub_mod) | |
for name, module in self.named_children(): | |
_set_padding_more_frame(name, module) | |
class ResidualBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
non_linearity: str = "silu", | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-6, | |
dropout: float = 0.0, | |
output_scale_factor: float = 1.0, | |
): | |
super().__init__() | |
self.output_scale_factor = output_scale_factor | |
self.norm1 = nn.GroupNorm( | |
num_groups=norm_num_groups, | |
num_channels=in_channels, | |
eps=norm_eps, | |
affine=True, | |
) | |
self.nonlinearity = get_activation(non_linearity) | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) | |
self.norm2 = nn.GroupNorm( | |
num_groups=norm_num_groups, | |
num_channels=out_channels, | |
eps=norm_eps, | |
affine=True, | |
) | |
self.dropout = nn.Dropout(dropout) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) | |
if in_channels != out_channels: | |
self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1) | |
else: | |
self.shortcut = nn.Identity() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
shortcut = self.shortcut(x) | |
x = self.norm1(x) | |
x = self.nonlinearity(x) | |
x = self.conv1(x) | |
x = self.norm2(x) | |
x = self.nonlinearity(x) | |
x = self.dropout(x) | |
x = self.conv2(x) | |
return (x + shortcut) / self.output_scale_factor | |
class ResidualBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
non_linearity: str = "silu", | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-6, | |
dropout: float = 0.0, | |
output_scale_factor: float = 1.0, | |
): | |
super().__init__() | |
self.output_scale_factor = output_scale_factor | |
self.norm1 = nn.GroupNorm( | |
num_groups=norm_num_groups, | |
num_channels=in_channels, | |
eps=norm_eps, | |
affine=True, | |
) | |
self.nonlinearity = get_activation(non_linearity) | |
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3) | |
self.norm2 = nn.GroupNorm( | |
num_groups=norm_num_groups, | |
num_channels=out_channels, | |
eps=norm_eps, | |
affine=True, | |
) | |
self.dropout = nn.Dropout(dropout) | |
self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3) | |
if in_channels != out_channels: | |
self.shortcut = nn.Conv3d(in_channels, out_channels, kernel_size=1) | |
else: | |
self.shortcut = nn.Identity() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
shortcut = self.shortcut(x) | |
x = self.norm1(x) | |
x = self.nonlinearity(x) | |
x = self.conv1(x) | |
x = self.norm2(x) | |
x = self.nonlinearity(x) | |
x = self.dropout(x) | |
x = self.conv2(x) | |
return (x + shortcut) / self.output_scale_factor | |
class SpatialNorm2D(nn.Module): | |
""" | |
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. | |
Args: | |
f_channels (`int`): | |
The number of channels for input to group normalization layer, and output of the spatial norm layer. | |
zq_channels (`int`): | |
The number of channels for the quantized vector as described in the paper. | |
""" | |
def __init__( | |
self, | |
f_channels: int, | |
zq_channels: int, | |
): | |
super().__init__() | |
self.norm = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True) | |
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) | |
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, f: torch.FloatTensor, zq: torch.FloatTensor) -> torch.FloatTensor: | |
f_size = f.shape[-2:] | |
zq = F.interpolate(zq, size=f_size, mode="nearest") | |
norm_f = self.norm(f) | |
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) | |
return new_f | |
class SpatialNorm3D(SpatialNorm2D): | |
def forward(self, f: torch.FloatTensor, zq: torch.FloatTensor) -> torch.FloatTensor: | |
batch_size = f.shape[0] | |
f = rearrange(f, "b c t h w -> (b t) c h w") | |
zq = rearrange(zq, "b c t h w -> (b t) c h w") | |
x = super().forward(f, zq) | |
x = rearrange(x, "(b t) c h w -> b c t h w", b=batch_size) | |
return x | |