Spaces:
Running
Running
import argparse | |
import copy | |
import os | |
import pandas as pd | |
from accelerate import PartialState | |
from accelerate.utils import gather_object | |
from natsort import natsorted | |
from tqdm import tqdm | |
from torch.utils.data import DataLoader | |
from utils.logger import logger | |
from utils.video_dataset import VideoDataset, collate_fn | |
from utils.video_utils import get_video_path_list, extract_frames | |
ACCELERATE_SUPPORTED_MODELS = ["Qwen-VL-Chat", "internlm-xcomposer2-vl-7b"] | |
SGLANG_SUPPORTED_MODELS = ["llava-v1.6-vicuna-7b"] | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Recaption the video frame.") | |
parser.add_argument("--video_folder", type=str, default="", help="The video folder.") | |
parser.add_argument( | |
"--video_metadata_path", type=str, default=None, help="The path to the video dataset metadata (csv/jsonl/txt)." | |
) | |
parser.add_argument( | |
"--video_path_column", | |
type=str, | |
default="video_path", | |
help="The column contains the video path (an absolute path or a relative path w.r.t the video_folder).", | |
) | |
parser.add_argument( | |
"--batch_size", | |
type=int, | |
default=10, | |
required=False, | |
help="The batch size for the video dataset.", | |
) | |
parser.add_argument( | |
"--frame_sample_method", | |
type=str, | |
choices=["mid", "uniform"], | |
default="mid", | |
) | |
parser.add_argument( | |
"--num_sampled_frames", | |
type=int, | |
default=1, | |
help="num_sampled_frames", | |
) | |
parser.add_argument( | |
"--image_caption_model_name", | |
type=str, | |
choices=ACCELERATE_SUPPORTED_MODELS + SGLANG_SUPPORTED_MODELS, | |
default="internlm-xcomposer2-vl-7b", | |
) | |
parser.add_argument( | |
"--image_caption_model_quantized", type=bool, default=True, help="Whether to use the quantized image caption model." | |
) | |
parser.add_argument( | |
"--image_caption_prompt", | |
type=str, | |
default="Describe this image and its style in a very detailed manner.", | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
required=True, | |
help="The directory to create the subfolder (named with the video name) to indicate the video has been processed.", | |
) | |
parser.add_argument("--saved_path", type=str, required=True, help="The save path to the output results (csv/jsonl).") | |
parser.add_argument("--saved_freq", type=int, default=1000, help="The frequency to save the output results.") | |
args = parser.parse_args() | |
return args | |
def accelerate_inference(args, video_path_list): | |
from utils.image_captioner_awq import QwenVLChat, InternLMXComposer2 | |
state = PartialState() | |
device = state.device | |
if state.num_processes == 1: | |
device = "cuda:0" | |
if args.image_caption_model_name == "internlm-xcomposer2-vl-7b": | |
image_caption_model = InternLMXComposer2(device=device, quantized=args.image_caption_model_quantized) | |
elif args.image_caption_model_name == "Qwen-VL-Chat": | |
image_caption_model = QwenVLChat(device=device, quantized=args.image_caption_model_quantized) | |
# The workaround can be removed after https://github.com/huggingface/accelerate/pull/2781 is released. | |
index = len(video_path_list) - len(video_path_list) % state.num_processes | |
logger.info(f"Drop {len(video_path_list) % state.num_processes} videos to avoid duplicates in state.split_between_processes.") | |
video_path_list = video_path_list[:index] | |
if state.is_main_process: | |
os.makedirs(args.output_dir, exist_ok=True) | |
result_list = [] | |
with state.split_between_processes(video_path_list) as splitted_video_path_list: | |
for i, video_path in enumerate(tqdm(splitted_video_path_list, desc=f"{state.device}")): | |
video_id = os.path.splitext(os.path.basename(video_path))[0] | |
try: | |
if not os.path.exists(video_path): | |
print(f"Video {video_id} does not exist. Pass it.") | |
continue | |
sampled_frame_list, sampled_frame_idx_list = extract_frames(video_path, num_sample_frames=args.num_sample_frames) | |
except Exception as e: | |
print(f"Failed to extract frames from video {video_id}. Error is {e}.") | |
video_recaption_output_dir = os.path.join(args.output_dir, video_id) | |
if os.path.exists(video_recaption_output_dir): | |
print(f"Video {video_id} has been processed. Pass it.") | |
continue | |
else: | |
os.makedirs(video_recaption_output_dir) | |
caption_list = [] | |
for frame, frame_idx in zip(sampled_frame_list, sampled_frame_idx_list): | |
frame_path = f"{args.output_dir}/{video_id}_{frame_idx}.png" | |
frame.save(frame_path) | |
try: | |
response, _ = image_caption_model(args.image_caption_prompt, frame_path) | |
except Exception as e: | |
print(f"Failed to caption video {video_id}. Error is {e}.") | |
finally: | |
os.remove(frame_path) | |
caption_list.append(response) | |
result_meta = {} | |
if args.video_folder == "": | |
result_meta[args.video_path_column] = video_path | |
else: | |
result_meta[args.video_path_column] = os.path.basename(video_path) | |
result_meta["image_caption_model"] = args.image_caption_model_name | |
result_meta["prompt"] = args.image_caption_prompt | |
result_meta["sampled_frame_idx"] = sampled_frame_idx_list | |
result_meta["sampled_frame_caption"] = caption_list | |
result_list.append(copy.deepcopy(result_meta)) | |
# Save the metadata in the main process. | |
if i != 0 and i % args.saved_freq == 0: | |
state.wait_for_everyone() | |
gathered_result_list = gather_object(result_list) | |
if state.is_main_process: | |
result_df = pd.DataFrame(gathered_result_list) | |
if args.saved_path.endswith(".csv"): | |
result_df.to_csv(args.saved_path, index=False) | |
elif args.saved_path.endswith(".jsonl"): | |
result_df.to_json(args.saved_path, orient="records", lines=True) | |
print(f"Save result to {args.saved_path}.") | |
# Wait for all processes to finish and gather the final result. | |
state.wait_for_everyone() | |
gathered_result_list = gather_object(result_list) | |
# Save the metadata in the main process. | |
if state.is_main_process: | |
result_df = pd.DataFrame(gathered_result_list) | |
if args.saved_path.endswith(".csv"): | |
result_df.to_csv(args.saved_path, index=False) | |
elif args.saved_path.endswith(".jsonl"): | |
result_df.to_json(args.saved_path, orient="records", lines=True) | |
print(f"Save the final result to {args.saved_path}.") | |
def sglang_inference(args, video_path_list): | |
from utils.image_captioner_sglang import LLaVASRT | |
if args.image_caption_model_name == "llava-v1.6-vicuna-7b": | |
image_caption_model = LLaVASRT() | |
result_dict = { | |
"video_path": [], | |
"image_caption_model": [], | |
"prompt": [], | |
'sampled_frame_idx': [], | |
"sampled_frame_caption": [] | |
} | |
video_dataset = VideoDataset( | |
video_path_list=video_path_list, | |
sample_method=args.frame_sample_method, | |
num_sampled_frames=args.num_sampled_frames | |
) | |
video_loader = DataLoader(video_dataset, batch_size=args.batch_size, num_workers=16, collate_fn=collate_fn) | |
for idx, batch in enumerate(tqdm(video_loader)): | |
if len(batch) == 0: | |
continue | |
batch_video_path, batch_frame_idx = batch["video_path"], batch["sampled_frame_idx"] | |
# [batch_size, num_sampled_frames, H, W, C] => [batch_size * num_sampled_frames, H, W, C]. | |
batch_frame = [] | |
for item_sampled_frame in batch["sampled_frame"]: | |
batch_frame.extend([frame for frame in item_sampled_frame]) | |
try: | |
response_list, _ = image_caption_model([args.image_caption_prompt] * len(batch_frame), batch_frame) | |
response_list = [response_list[i:i + args.num_sampled_frames] for i in range(0, len(response_list), args.num_sampled_frames)] | |
except Exception as e: | |
logger.error(f"Failed to caption video {batch_video_path}. Error is {e}.") | |
result_dict["video_path"].extend(batch_video_path) | |
result_dict["image_caption_model"].extend([args.image_caption_model_name] * len(batch_video_path)) | |
result_dict["prompt"].extend([args.image_caption_prompt] * len(batch_video_path)) | |
result_dict["sampled_frame_idx"].extend(batch_frame_idx) | |
result_dict["sampled_frame_caption"].extend(response_list) | |
# Save the metadata in the main process. | |
if idx != 0 and idx % args.saved_freq == 0: | |
result_df = pd.DataFrame(result_dict) | |
if args.saved_path.endswith(".csv"): | |
header = True if not os.path.exists(args.saved_path) else False | |
result_df.to_csv(args.saved_path, header=header, index=False, mode="a") | |
elif args.saved_path.endswith(".jsonl"): | |
result_df.to_json(args.saved_path, orient="records", lines=True, mode="a") | |
logger.info(f"Save result to {args.saved_path}.") | |
result_dict = { | |
"video_path": [], | |
"image_caption_model": [], | |
"prompt": [], | |
'sampled_frame_idx': [], | |
"sampled_frame_caption": [] | |
} | |
if len(result_dict["video_path"]) != 0: | |
result_df = pd.DataFrame(result_dict) | |
if args.saved_path.endswith(".csv"): | |
header = True if not os.path.exists(args.saved_path) else False | |
result_df.to_csv(args.saved_path, header=header, index=False, mode="a") | |
elif args.saved_path.endswith(".jsonl"): | |
result_df.to_json(args.saved_path, orient="records", lines=True, mode="a") | |
logger.info(f"Save the final result to {args.saved_path}.") | |
def main(): | |
args = parse_args() | |
video_path_list = get_video_path_list( | |
video_folder=args.video_folder, | |
video_metadata_path=args.video_metadata_path, | |
video_path_column=args.video_path_column | |
) | |
if not (args.saved_path.endswith(".csv") or args.saved_path.endswith(".jsonl")): | |
raise ValueError("The saved_path must end with .csv or .jsonl.") | |
if os.path.exists(args.saved_path): | |
if args.saved_path.endswith(".csv"): | |
saved_metadata_df = pd.read_csv(args.saved_path) | |
elif args.saved_path.endswith(".jsonl"): | |
saved_metadata_df = pd.read_json(args.saved_path, lines=True) | |
saved_video_path_list = saved_metadata_df[args.video_path_column].tolist() | |
saved_video_path_list = [os.path.join(args.video_folder, path) for path in saved_video_path_list] | |
video_path_list = list(set(video_path_list) - set(saved_video_path_list)) | |
# Sorting to guarantee the same result for each process. | |
video_path_list = natsorted(video_path_list) | |
logger.info(f"Resume from {args.saved_path}: {len(saved_video_path_list)} processed and {len(video_path_list)} to be processed.") | |
if args.image_caption_model_name in SGLANG_SUPPORTED_MODELS: | |
sglang_inference(args, video_path_list) | |
elif args.image_caption_model_name in ACCELERATE_SUPPORTED_MODELS: | |
accelerate_inference(args, video_path_list) | |
else: | |
raise ValueError(f"The {args.image_caption_model_name} is not supported.") | |
if __name__ == "__main__": | |
main() | |