Kabatubare's picture
Update app.py
50facbf verified
raw
history blame
1.81 kB
import gradio as gr
import librosa
import numpy as np
import torch
import logging
from transformers import AutoModelForAudioClassification
logging.basicConfig(level=logging.INFO)
model_path = "./"
model = AutoModelForAudioClassification.from_pretrained(model_path)
def preprocess_audio(audio_file_path, sr=16000):
waveform, _ = librosa.load(audio_file_path, sr=sr)
waveform = librosa.effects.trim(waveform)[0] # Trim silence
return waveform
def extract_features(waveform, sr=16000, n_mels=128, n_fft=2048, hop_length=512):
S = librosa.feature.melspectrogram(y=waveform, sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
S_DB = librosa.power_to_db(S, ref=np.max)
return torch.tensor(S_DB).float().unsqueeze(0) # Add batch dimension
def predict_voice(audio_file_path):
try:
waveform = preprocess_audio(audio_file_path)
features = extract_features(waveform)
with torch.no_grad():
outputs = model(features)
logits = outputs.logits
predicted_index = logits.argmax()
label = model.config.id2label[predicted_index.item()]
confidence = torch.softmax(logits, dim=1).max().item() * 100
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
logging.info("Prediction successful.")
except Exception as e:
result = f"Error during processing: {e}"
logging.error(result)
return result
iface = gr.Interface(
fn=predict_voice,
inputs=gr.Audio(label="Upload Audio File", type="file"),
outputs=gr.Text(label="Prediction"),
title="Voice Authenticity Detection",
description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results."
)
iface.launch()