Kabatubare's picture
Update app.py
af80923 verified
raw
history blame
1.71 kB
import numpy as np
import torch
import librosa
import gradio as gr
from transformers import AutoModelForAudioClassification, Wav2Vec2Processor
import logging
logging.basicConfig(level=logging.INFO)
model_path = "./"
model = AutoModelForAudioClassification.from_pretrained(model_path)
processor = Wav2Vec2Processor.from_pretrained(model_path)
def preprocess_audio(audio_path, sr=16000):
audio, _ = librosa.load(audio_path, sr=sr)
audio, _ = librosa.effects.trim(audio)
return audio
def extract_features(audio, sr=16000):
inputs = processor(audio, sampling_rate=sr, return_tensors="pt", padding=True)
return inputs
def predict_voice(audio_file_path):
try:
audio = preprocess_audio(audio_file_path)
features = extract_features(audio)
with torch.no_grad():
outputs = model(**features)
logits = outputs.logits
predicted_index = logits.argmax(dim=-1)
label = processor.decode(predicted_index)
confidence = torch.softmax(logits, dim=-1).max().item() * 100
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
logging.info("Prediction successful.")
except Exception as e:
result = f"Error during processing: {e}"
logging.error(result)
return result
iface = gr.Interface(
fn=predict_voice,
inputs=gr.Audio(label="Upload Audio File", type="filepath"),
outputs=gr.Text(label="Prediction"),
title="Voice Authenticity Detection",
description="This system uses advanced audio processing to detect whether a voice is real or AI-generated. Upload an audio file to see the results."
).launch()