Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import librosa | |
import gradio as gr | |
from transformers import AutoModelForAudioClassification, Wav2Vec2Processor | |
import logging | |
logging.basicConfig(level=logging.INFO) | |
model_path = "./" | |
model = AutoModelForAudioClassification.from_pretrained(model_path) | |
processor = Wav2Vec2Processor.from_pretrained(model_path) | |
def preprocess_audio(audio_path, sr=16000): | |
audio, _ = librosa.load(audio_path, sr=sr) | |
audio, _ = librosa.effects.trim(audio) | |
return audio | |
def extract_features(audio, sr=16000): | |
inputs = processor(audio, sampling_rate=sr, return_tensors="pt", padding=True) | |
return inputs | |
def predict_voice(audio_file_path): | |
try: | |
audio = preprocess_audio(audio_file_path) | |
features = extract_features(audio) | |
with torch.no_grad(): | |
outputs = model(**features) | |
logits = outputs.logits | |
predicted_index = logits.argmax(dim=-1) | |
label = processor.decode(predicted_index) | |
confidence = torch.softmax(logits, dim=-1).max().item() * 100 | |
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%." | |
logging.info("Prediction successful.") | |
except Exception as e: | |
result = f"Error during processing: {e}" | |
logging.error(result) | |
return result | |
iface = gr.Interface( | |
fn=predict_voice, | |
inputs=gr.Audio(label="Upload Audio File", type="filepath"), | |
outputs=gr.Text(label="Prediction"), | |
title="Voice Authenticity Detection", | |
description="This system uses advanced audio processing to detect whether a voice is real or AI-generated. Upload an audio file to see the results." | |
).launch() | |