Kabatubare's picture
Update app.py
b6be582 verified
raw
history blame
2.71 kB
import gradio as gr
import librosa
import numpy as np
import torch
import logging
from transformers import AutoModelForAudioClassification
logging.basicConfig(level=logging.INFO)
model_path = "./"
model = AutoModelForAudioClassification.from_pretrained(model_path)
def augment_and_extract_features(audio_path, sr=16000, n_mfcc=40, n_fft=2048, hop_length=512, target_length=512):
y, sr = librosa.load(audio_path, sr=sr)
y_pitch_shifted = librosa.effects.pitch_shift(y, sr=sr, n_steps=4)
y_time_stretched = librosa.effects.time_stretch(y_pitch_shifted, rate=1.2)
mfcc = librosa.feature.mfcc(y=y_time_stretched, sr=sr, n_mfcc=n_mfcc, n_fft=n_fft, hop_length=hop_length)
chroma = librosa.feature.chroma_stft(y=y_time_stretched, sr=sr, n_fft=n_fft, hop_length=hop_length)
mel = librosa.feature.melspectrogram(y=y_time_stretched, sr=sr, n_fft=n_fft, hop_length=hop_length)
contrast = librosa.feature.spectral_contrast(y=y_time_stretched, sr=sr, n_fft=n_fft, hop_length=hop_length)
tonnetz = librosa.feature.tonnetz(y=librosa.effects.harmonic(y_time_stretched), sr=sr)
features = np.concatenate((mfcc, chroma, mel, contrast, tonnetz), axis=0)
features_normalized = (features - np.mean(features, axis=1, keepdims=True)) / np.std(features, axis=1, keepdims=True)
if features_normalized.shape[1] > target_length:
features_normalized = features_normalized[:, :target_length]
else:
padding = target_length - features_normalized.shape[1]
features_normalized = np.pad(features_normalized, ((0, 0), (0, padding)), 'constant')
features_tensor = torch.tensor(features_normalized).float().unsqueeze(0) # Add batch dimension
return features_tensor
def predict_voice(audio_file_path):
try:
features_tensor = augment_and_extract_features(audio_file_path)
with torch.no_grad():
outputs = model(features_tensor)
logits = outputs.logits
predicted_index = logits.argmax()
label = model.config.id2label[predicted_index.item()]
confidence = torch.softmax(logits, dim=1).max().item() * 100
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
logging.info("Prediction successful.")
except Exception as e:
result = f"Error during processing: {e}"
logging.error(result)
return result
iface = gr.Interface(
fn=predict_voice,
inputs=gr.Audio(label="Upload Audio File", type="filepath"),
outputs=gr.Textbox(label="Prediction"),
title="Voice Authenticity Detection",
description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results."
)
iface.launch()