Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,33 +2,48 @@ import gradio as gr
|
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
-
import torch.nn.functional as F
|
6 |
import logging
|
7 |
from transformers import AutoModelForAudioClassification
|
8 |
|
9 |
-
# Configure logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
-
# Model loading
|
13 |
local_model_path = "./"
|
14 |
model = AutoModelForAudioClassification.from_pretrained(local_model_path)
|
15 |
|
16 |
-
def custom_feature_extraction(audio_file_path, sr=16000, n_mels=128, n_fft=2048, hop_length=512
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
waveform, sample_rate = librosa.load(audio_file_path, sr=sr)
|
18 |
S = librosa.feature.melspectrogram(y=waveform, sr=sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
|
19 |
S_DB = librosa.power_to_db(S, ref=np.max)
|
20 |
S_DB_tensor = torch.tensor(S_DB).float().unsqueeze(0) # Add batch dimension
|
21 |
-
|
22 |
-
# Resizing the tensor to match the model's expected input size
|
23 |
-
S_DB_tensor_resized = F.interpolate(S_DB_tensor, size=(n_mels, target_length), mode='nearest')
|
24 |
-
return S_DB_tensor_resized
|
25 |
|
26 |
def predict_voice(audio_file_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
try:
|
28 |
features = custom_feature_extraction(audio_file_path)
|
29 |
|
30 |
with torch.no_grad():
|
31 |
-
|
|
|
32 |
|
33 |
logits = outputs.logits
|
34 |
predicted_index = logits.argmax()
|
@@ -36,13 +51,14 @@ def predict_voice(audio_file_path):
|
|
36 |
confidence = torch.softmax(logits, dim=1).max().item() * 100
|
37 |
|
38 |
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
|
39 |
-
logging.info(
|
40 |
except Exception as e:
|
41 |
result = f"Error during processing: {e}"
|
42 |
logging.error(result)
|
43 |
|
44 |
return result
|
45 |
|
|
|
46 |
iface = gr.Interface(
|
47 |
fn=predict_voice,
|
48 |
inputs=gr.Audio(label="Upload Audio File", type="filepath"),
|
@@ -51,4 +67,5 @@ iface = gr.Interface(
|
|
51 |
description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results."
|
52 |
)
|
53 |
|
54 |
-
|
|
|
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
5 |
import logging
|
6 |
from transformers import AutoModelForAudioClassification
|
7 |
|
8 |
+
# Configure logging for debugging and information
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
|
11 |
+
# Model loading from the specified local path
|
12 |
local_model_path = "./"
|
13 |
model = AutoModelForAudioClassification.from_pretrained(local_model_path)
|
14 |
|
15 |
+
def custom_feature_extraction(audio_file_path, sr=16000, n_mels=128, n_fft=2048, hop_length=512):
|
16 |
+
"""
|
17 |
+
Custom feature extraction using Mel spectrogram, tailored for models trained on datasets like AudioSet.
|
18 |
+
Args:
|
19 |
+
audio_file_path: Path to the audio file for prediction.
|
20 |
+
sr: Target sampling rate for the audio file.
|
21 |
+
n_mels: Number of Mel bands to generate.
|
22 |
+
n_fft: Length of the FFT window.
|
23 |
+
hop_length: Number of samples between successive frames.
|
24 |
+
Returns:
|
25 |
+
A tensor representation of the Mel spectrogram features.
|
26 |
+
"""
|
27 |
waveform, sample_rate = librosa.load(audio_file_path, sr=sr)
|
28 |
S = librosa.feature.melspectrogram(y=waveform, sr=sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
|
29 |
S_DB = librosa.power_to_db(S, ref=np.max)
|
30 |
S_DB_tensor = torch.tensor(S_DB).float().unsqueeze(0) # Add batch dimension
|
31 |
+
return S_DB_tensor
|
|
|
|
|
|
|
32 |
|
33 |
def predict_voice(audio_file_path):
|
34 |
+
"""
|
35 |
+
Predicts the audio class using a pre-trained model and custom feature extraction.
|
36 |
+
Args:
|
37 |
+
audio_file_path: Path to the audio file for prediction.
|
38 |
+
Returns:
|
39 |
+
A string containing the predicted class and confidence level.
|
40 |
+
"""
|
41 |
try:
|
42 |
features = custom_feature_extraction(audio_file_path)
|
43 |
|
44 |
with torch.no_grad():
|
45 |
+
# Adjust the model prediction line if necessary to match your model's expected input
|
46 |
+
outputs = model(inputs=features)
|
47 |
|
48 |
logits = outputs.logits
|
49 |
predicted_index = logits.argmax()
|
|
|
51 |
confidence = torch.softmax(logits, dim=1).max().item() * 100
|
52 |
|
53 |
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
|
54 |
+
logging.info("Prediction successful.")
|
55 |
except Exception as e:
|
56 |
result = f"Error during processing: {e}"
|
57 |
logging.error(result)
|
58 |
|
59 |
return result
|
60 |
|
61 |
+
# Setting up the Gradio interface
|
62 |
iface = gr.Interface(
|
63 |
fn=predict_voice,
|
64 |
inputs=gr.Audio(label="Upload Audio File", type="filepath"),
|
|
|
67 |
description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results."
|
68 |
)
|
69 |
|
70 |
+
# Launching the interface
|
71 |
+
iface.launch()
|