Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import pickle | |
import pinecone | |
import time | |
from langchain import OpenAI | |
from langchain.chains import RetrievalQAWithSourcesChain | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.document_loaders import UnstructuredURLLoader | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.vectorstores import FAISS | |
from langchain.vectorstores import Pinecone | |
from dotenv import load_dotenv | |
load_dotenv() # take environment variables from .env (especially openai api key) | |
st.title("Research Tool π") | |
st.sidebar.title("Article URLs") | |
urls = [] | |
for i in range(3): | |
url = st.sidebar.text_input(f"URL {i+1}") | |
urls.append(url) | |
main_placeholder = st.empty() | |
query = main_placeholder.text_input("Question: ") | |
if query: | |
loader = UnstructuredURLLoader(urls=urls) | |
main_placeholder.text("Data Loading...Started...β β β ") | |
data = loader.load() | |
# split data | |
text_splitter = RecursiveCharacterTextSplitter( | |
separators=['\n\n', '\n', '.', ','], | |
chunk_size=1000 | |
) | |
main_placeholder.text("Text Splitter...Started...β β β ") | |
docs = text_splitter.split_documents(data) | |
# create embeddings and save it to FAISS index | |
embeddings = OpenAIEmbeddings(api_key=os.getenv('OPENAI_API_KEY')) | |
pinecone.init( | |
api_key=os.getenv('PINECONE_API_KEY'), | |
environment="gcp-starter" | |
) | |
index_name = "langchainvector" | |
index = Pinecone.from_documents(docs, embeddings, index_name=index_name) | |
main_placeholder.text("Embedding Vector Started Building...β β β ") | |
def retrieve_query(mquery, k=3): | |
matching_results = index.similarity_search(mquery, k=k) | |
return matching_results | |
llm = OpenAI(temperature=0.5) | |
chain = load_qa_chain(llm, chain_type="stuff") | |
def retrieve_ans(mquery): | |
doc_search = retrieve_query(mquery) | |
print(doc_search) | |
response = chain.run(input_documents = doc_search, question=query) | |
return response | |
result = retrieve_ans(query) | |
st.header("Answer") | |
st.write(result) | |
# Display sources, if available | |
# sources = result.get("sources", "") | |
# if sources: | |
# st.subheader("Sources:") | |
# sources_list = sources.split("\n") # Split the sources by newline | |
# for source in sources_list: | |
# st.write(source) | |