|
|
|
|
|
|
|
import tqdm |
|
import torch |
|
from dust3r.utils.device import to_cpu, collate_with_cat |
|
from dust3r.utils.misc import invalid_to_nans |
|
from dust3r.utils.geometry import depthmap_to_pts3d, geotrf |
|
from dust3r.viz import SceneViz, auto_cam_size |
|
from dust3r.utils.image import rgb |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
|
|
def _interleave_imgs(img1, img2): |
|
res = {} |
|
for key, value1 in img1.items(): |
|
value2 = img2[key] |
|
if isinstance(value1, torch.Tensor) and value1.ndim == value2.ndim: |
|
value = torch.stack((value1, value2), dim=1).flatten(0, 1) |
|
else: |
|
value = [x for pair in zip(value1, value2) for x in pair] |
|
res[key] = value |
|
return res |
|
|
|
|
|
def make_batch_symmetric(batch): |
|
view1, view2 = batch |
|
view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1)) |
|
return view1, view2 |
|
|
|
|
|
def mask_to_color(mask): |
|
colors = np.zeros((*mask.shape, 3)) |
|
colors[:,:,0] = mask.cpu().detach() |
|
return colors |
|
|
|
def visualize_results_mmask(view1, view2, pred1, pred2, save_dir='./tmp', save_name=None, visualize_type='gt'): |
|
|
|
viz1 = SceneViz() |
|
viz2 = SceneViz() |
|
viz = [viz1, viz2] |
|
views = [view1, view2] |
|
poses = [views[view_idx]['camera_pose'][0] for view_idx in [0, 1]] |
|
cam_size = max(auto_cam_size(poses), 0.5) |
|
if visualize_type == 'pred': |
|
cam_size *= 0.1 |
|
views[0]['pts3d'] = geotrf(poses[0], pred1['pts3d']) |
|
views[1]['pts3d'] = geotrf(poses[0], pred2['pts3d_in_other_view']) |
|
mmask = [pred1['dynamic_mask'], pred2['dynamic_mask']] |
|
else: |
|
mmask = [view1['dynamic_mask'], view2['dynamic_mask']] |
|
|
|
images = [] |
|
save_paths = [] |
|
for view_idx in [0, 1]: |
|
pts3d = views[view_idx]['pts3d'][0] |
|
valid_mask = views[view_idx]['valid_mask'][0] |
|
colors = rgb(views[view_idx]['img'][0]) |
|
|
|
alpha = 0.5 |
|
mmask_color = mask_to_color(mmask[view_idx][0]) |
|
colors = alpha * colors + (1 - alpha) * mmask_color |
|
images.append(colors) |
|
|
|
|
|
|
|
|
|
|
|
|
|
save_name = f'{views[0]["dataset"][0]}_{views[0]["label"][0]}_{views[0]["instance"][0]}_{views[1]["instance"][0]}_{visualize_type}_{view_idx}' |
|
|
|
|
|
|
|
|
|
|
|
|
|
rgb_image = (colors * 255).astype(np.uint8) |
|
img = Image.fromarray(rgb_image) |
|
img.save(save_dir+'/'+save_name+'_mmask.png') |
|
|
|
return images[0], images[1] |
|
|
|
def visualize_results(view1, view2, pred1, pred2, save_dir='./tmp', save_name=None, visualize_type='gt'): |
|
|
|
viz1 = SceneViz() |
|
viz2 = SceneViz() |
|
viz = [viz1, viz2] |
|
views = [view1, view2] |
|
poses = [views[view_idx]['camera_pose'][0] for view_idx in [0, 1]] |
|
cam_size = max(auto_cam_size(poses), 0.5) |
|
if visualize_type == 'pred': |
|
cam_size *= 0.1 |
|
views[0]['pts3d'] = geotrf(poses[0], pred1['pts3d']) |
|
views[1]['pts3d'] = geotrf(poses[0], pred2['pts3d_in_other_view']) |
|
|
|
save_paths = [] |
|
images = [] |
|
for view_idx in [0, 1]: |
|
pts3d = views[view_idx]['pts3d'][0] |
|
valid_mask = views[view_idx]['valid_mask'][0] |
|
colors = rgb(views[view_idx]['img'][0]) |
|
images.append(colors) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if save_name is None: |
|
save_name = f'{views[0]["dataset"][0]}_{views[0]["label"][0]}_{views[0]["instance"][0]}_{views[1]["instance"][0]}_{visualize_type}_{view_idx}' |
|
|
|
|
|
|
|
|
|
|
|
|
|
rgb_image = (colors * 255).astype(np.uint8) |
|
img = Image.fromarray(rgb_image) |
|
img.save(save_dir+'/'+save_name+'.png') |
|
|
|
|
|
return images[0], images[1] |
|
|
|
def loss_of_one_batch(batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None): |
|
view1, view2 = batch |
|
ignore_keys = set(['depthmap', 'dataset', 'label', 'instance', 'idx', 'true_shape', 'rng']) |
|
for view in batch: |
|
for name in view.keys(): |
|
if name in ignore_keys: |
|
continue |
|
view[name] = view[name].to(device, non_blocking=True) |
|
|
|
if symmetrize_batch: |
|
view1, view2 = make_batch_symmetric(batch) |
|
|
|
with torch.amp.autocast(enabled=bool(use_amp), device_type="cuda"): |
|
|
|
|
|
|
|
pred1, pred2 = model(view1, view2) |
|
|
|
|
|
with torch.amp.autocast(enabled=False, device_type="cuda"): |
|
loss = criterion(view1, view2, pred1, pred2) if criterion is not None else None |
|
|
|
result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss) |
|
|
|
return result[ret] if ret else result |
|
|
|
|
|
@torch.no_grad() |
|
def inference(pairs, model, device, batch_size=8, verbose=True): |
|
if verbose: |
|
print(f'>> Inference with model on {len(pairs)} image pairs') |
|
result = [] |
|
|
|
|
|
multiple_shapes = not (check_if_same_size(pairs)) |
|
if multiple_shapes: |
|
batch_size = 1 |
|
|
|
for i in tqdm.trange(0, len(pairs), batch_size, disable=not verbose): |
|
|
|
res = loss_of_one_batch(collate_with_cat(pairs[i:i+batch_size]), model, None, device) |
|
|
|
result.append(to_cpu(res)) |
|
|
|
result = collate_with_cat(result, lists=multiple_shapes) |
|
|
|
return result |
|
|
|
|
|
def check_if_same_size(pairs): |
|
shapes1 = [img1['img'].shape[-2:] for img1, img2 in pairs] |
|
shapes2 = [img2['img'].shape[-2:] for img1, img2 in pairs] |
|
return all(shapes1[0] == s for s in shapes1) and all(shapes2[0] == s for s in shapes2) |
|
|
|
|
|
def get_pred_pts3d(gt, pred, use_pose=False): |
|
if 'depth' in pred and 'pseudo_focal' in pred: |
|
try: |
|
pp = gt['camera_intrinsics'][..., :2, 2] |
|
except KeyError: |
|
pp = None |
|
pts3d = depthmap_to_pts3d(**pred, pp=pp) |
|
|
|
elif 'pts3d' in pred: |
|
|
|
pts3d = pred['pts3d'] |
|
|
|
elif 'pts3d_in_other_view' in pred: |
|
|
|
assert use_pose is True |
|
return pred['pts3d_in_other_view'] |
|
|
|
if use_pose: |
|
camera_pose = pred.get('camera_pose') |
|
assert camera_pose is not None |
|
pts3d = geotrf(camera_pose, pts3d) |
|
|
|
return pts3d |
|
|
|
|
|
def find_opt_scaling(gt_pts1, gt_pts2, pr_pts1, pr_pts2=None, fit_mode='weiszfeld_stop_grad', valid1=None, valid2=None): |
|
assert gt_pts1.ndim == pr_pts1.ndim == 4 |
|
assert gt_pts1.shape == pr_pts1.shape |
|
if gt_pts2 is not None: |
|
assert gt_pts2.ndim == pr_pts2.ndim == 4 |
|
assert gt_pts2.shape == pr_pts2.shape |
|
|
|
|
|
nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2) |
|
nan_gt_pts2 = invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None |
|
|
|
pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2) |
|
pr_pts2 = invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None |
|
|
|
all_gt = torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1) if gt_pts2 is not None else nan_gt_pts1 |
|
all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1 |
|
|
|
dot_gt_pr = (all_pr * all_gt).sum(dim=-1) |
|
dot_gt_gt = all_gt.square().sum(dim=-1) |
|
|
|
if fit_mode.startswith('avg'): |
|
|
|
scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) |
|
elif fit_mode.startswith('median'): |
|
scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values |
|
elif fit_mode.startswith('weiszfeld'): |
|
|
|
scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) |
|
|
|
for iter in range(10): |
|
|
|
dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1) |
|
|
|
w = dis.clip_(min=1e-8).reciprocal() |
|
|
|
scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1) |
|
else: |
|
raise ValueError(f'bad {fit_mode=}') |
|
|
|
if fit_mode.endswith('stop_grad'): |
|
scaling = scaling.detach() |
|
|
|
scaling = scaling.clip(min=1e-3) |
|
|
|
return scaling |
|
|