Kai422kx's picture
init
4f6b78d
import os
import numpy as np
from os.path import isfile
import torch
import torch.nn.functional as F
EPS = 1e-6
import copy
def sub2ind(height, width, y, x):
return y*width + x
def ind2sub(height, width, ind):
y = ind // width
x = ind % width
return y, x
def get_lr_str(lr):
lrn = "%.1e" % lr # e.g., 5.0e-04
lrn = lrn[0] + lrn[3:5] + lrn[-1] # e.g., 5e-4
return lrn
def strnum(x):
s = '%g' % x
if '.' in s:
if x < 1.0:
s = s[s.index('.'):]
s = s[:min(len(s),4)]
return s
def assert_same_shape(t1, t2):
for (x, y) in zip(list(t1.shape), list(t2.shape)):
assert(x==y)
def print_stats(name, tensor):
shape = tensor.shape
tensor = tensor.detach().cpu().numpy()
print('%s (%s) min = %.2f, mean = %.2f, max = %.2f' % (name, tensor.dtype, np.min(tensor), np.mean(tensor), np.max(tensor)), shape)
def print_stats_py(name, tensor):
shape = tensor.shape
print('%s (%s) min = %.2f, mean = %.2f, max = %.2f' % (name, tensor.dtype, np.min(tensor), np.mean(tensor), np.max(tensor)), shape)
def print_(name, tensor):
tensor = tensor.detach().cpu().numpy()
print(name, tensor, tensor.shape)
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def normalize_single(d):
# d is a whatever shape torch tensor
dmin = torch.min(d)
dmax = torch.max(d)
d = (d-dmin)/(EPS+(dmax-dmin))
return d
def normalize(d):
# d is B x whatever. normalize within each element of the batch
out = torch.zeros(d.size())
if d.is_cuda:
out = out.cuda()
B = list(d.size())[0]
for b in list(range(B)):
out[b] = normalize_single(d[b])
return out
def hard_argmax2d(tensor):
B, C, Y, X = list(tensor.shape)
assert(C==1)
# flatten the Tensor along the height and width axes
flat_tensor = tensor.reshape(B, -1)
# argmax of the flat tensor
argmax = torch.argmax(flat_tensor, dim=1)
# convert the indices into 2d coordinates
argmax_y = torch.floor(argmax / X) # row
argmax_x = argmax % X # col
argmax_y = argmax_y.reshape(B)
argmax_x = argmax_x.reshape(B)
return argmax_y, argmax_x
def argmax2d(heat, hard=True):
B, C, Y, X = list(heat.shape)
assert(C==1)
if hard:
# hard argmax
loc_y, loc_x = hard_argmax2d(heat)
loc_y = loc_y.float()
loc_x = loc_x.float()
else:
heat = heat.reshape(B, Y*X)
prob = torch.nn.functional.softmax(heat, dim=1)
grid_y, grid_x = meshgrid2d(B, Y, X)
grid_y = grid_y.reshape(B, -1)
grid_x = grid_x.reshape(B, -1)
loc_y = torch.sum(grid_y*prob, dim=1)
loc_x = torch.sum(grid_x*prob, dim=1)
# these are B
return loc_y, loc_x
def reduce_masked_mean(x, mask, dim=None, keepdim=False):
# x and mask are the same shape, or at least broadcastably so < actually it's safer if you disallow broadcasting
# returns shape-1
# axis can be a list of axes
for (a,b) in zip(x.size(), mask.size()):
# if not b==1:
assert(a==b) # some shape mismatch!
# assert(x.size() == mask.size())
prod = x*mask
if dim is None:
numer = torch.sum(prod)
denom = EPS+torch.sum(mask)
else:
numer = torch.sum(prod, dim=dim, keepdim=keepdim)
denom = EPS+torch.sum(mask, dim=dim, keepdim=keepdim)
mean = numer/denom
return mean
def reduce_masked_median(x, mask, keep_batch=False):
# x and mask are the same shape
assert(x.size() == mask.size())
device = x.device
B = list(x.shape)[0]
x = x.detach().cpu().numpy()
mask = mask.detach().cpu().numpy()
if keep_batch:
x = np.reshape(x, [B, -1])
mask = np.reshape(mask, [B, -1])
meds = np.zeros([B], np.float32)
for b in list(range(B)):
xb = x[b]
mb = mask[b]
if np.sum(mb) > 0:
xb = xb[mb > 0]
meds[b] = np.median(xb)
else:
meds[b] = np.nan
meds = torch.from_numpy(meds).to(device)
return meds.float()
else:
x = np.reshape(x, [-1])
mask = np.reshape(mask, [-1])
if np.sum(mask) > 0:
x = x[mask > 0]
med = np.median(x)
else:
med = np.nan
med = np.array([med], np.float32)
med = torch.from_numpy(med).to(device)
return med.float()
def pack_seqdim(tensor, B):
shapelist = list(tensor.shape)
B_, S = shapelist[:2]
assert(B==B_)
otherdims = shapelist[2:]
tensor = torch.reshape(tensor, [B*S]+otherdims)
return tensor
def unpack_seqdim(tensor, B):
shapelist = list(tensor.shape)
BS = shapelist[0]
assert(BS%B==0)
otherdims = shapelist[1:]
S = int(BS/B)
tensor = torch.reshape(tensor, [B,S]+otherdims)
return tensor
def meshgrid2d(B, Y, X, stack=False, norm=False, device='cuda', on_chans=False):
# returns a meshgrid sized B x Y x X
grid_y = torch.linspace(0.0, Y-1, Y, device=torch.device(device))
grid_y = torch.reshape(grid_y, [1, Y, 1])
grid_y = grid_y.repeat(B, 1, X)
grid_x = torch.linspace(0.0, X-1, X, device=torch.device(device))
grid_x = torch.reshape(grid_x, [1, 1, X])
grid_x = grid_x.repeat(B, Y, 1)
if norm:
grid_y, grid_x = normalize_grid2d(
grid_y, grid_x, Y, X)
if stack:
# note we stack in xy order
# (see https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample)
if on_chans:
grid = torch.stack([grid_x, grid_y], dim=1)
else:
grid = torch.stack([grid_x, grid_y], dim=-1)
return grid
else:
return grid_y, grid_x
def meshgrid3d(B, Z, Y, X, stack=False, norm=False, device='cuda'):
# returns a meshgrid sized B x Z x Y x X
grid_z = torch.linspace(0.0, Z-1, Z, device=device)
grid_z = torch.reshape(grid_z, [1, Z, 1, 1])
grid_z = grid_z.repeat(B, 1, Y, X)
grid_y = torch.linspace(0.0, Y-1, Y, device=device)
grid_y = torch.reshape(grid_y, [1, 1, Y, 1])
grid_y = grid_y.repeat(B, Z, 1, X)
grid_x = torch.linspace(0.0, X-1, X, device=device)
grid_x = torch.reshape(grid_x, [1, 1, 1, X])
grid_x = grid_x.repeat(B, Z, Y, 1)
# if cuda:
# grid_z = grid_z.cuda()
# grid_y = grid_y.cuda()
# grid_x = grid_x.cuda()
if norm:
grid_z, grid_y, grid_x = normalize_grid3d(
grid_z, grid_y, grid_x, Z, Y, X)
if stack:
# note we stack in xyz order
# (see https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample)
grid = torch.stack([grid_x, grid_y, grid_z], dim=-1)
return grid
else:
return grid_z, grid_y, grid_x
def normalize_grid2d(grid_y, grid_x, Y, X, clamp_extreme=True):
# make things in [-1,1]
grid_y = 2.0*(grid_y / float(Y-1)) - 1.0
grid_x = 2.0*(grid_x / float(X-1)) - 1.0
if clamp_extreme:
grid_y = torch.clamp(grid_y, min=-2.0, max=2.0)
grid_x = torch.clamp(grid_x, min=-2.0, max=2.0)
return grid_y, grid_x
def normalize_grid3d(grid_z, grid_y, grid_x, Z, Y, X, clamp_extreme=True):
# make things in [-1,1]
grid_z = 2.0*(grid_z / float(Z-1)) - 1.0
grid_y = 2.0*(grid_y / float(Y-1)) - 1.0
grid_x = 2.0*(grid_x / float(X-1)) - 1.0
if clamp_extreme:
grid_z = torch.clamp(grid_z, min=-2.0, max=2.0)
grid_y = torch.clamp(grid_y, min=-2.0, max=2.0)
grid_x = torch.clamp(grid_x, min=-2.0, max=2.0)
return grid_z, grid_y, grid_x
def gridcloud2d(B, Y, X, norm=False, device='cuda'):
# we want to sample for each location in the grid
grid_y, grid_x = meshgrid2d(B, Y, X, norm=norm, device=device)
x = torch.reshape(grid_x, [B, -1])
y = torch.reshape(grid_y, [B, -1])
# these are B x N
xy = torch.stack([x, y], dim=2)
# this is B x N x 2
return xy
def gridcloud3d(B, Z, Y, X, norm=False, device='cuda'):
# we want to sample for each location in the grid
grid_z, grid_y, grid_x = meshgrid3d(B, Z, Y, X, norm=norm, device=device)
x = torch.reshape(grid_x, [B, -1])
y = torch.reshape(grid_y, [B, -1])
z = torch.reshape(grid_z, [B, -1])
# these are B x N
xyz = torch.stack([x, y, z], dim=2)
# this is B x N x 3
return xyz
import re
def readPFM(file):
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header == b'PF':
color = True
elif header == b'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data
def normalize_boxlist2d(boxlist2d, H, W):
boxlist2d = boxlist2d.clone()
ymin, xmin, ymax, xmax = torch.unbind(boxlist2d, dim=2)
ymin = ymin / float(H)
ymax = ymax / float(H)
xmin = xmin / float(W)
xmax = xmax / float(W)
boxlist2d = torch.stack([ymin, xmin, ymax, xmax], dim=2)
return boxlist2d
def unnormalize_boxlist2d(boxlist2d, H, W):
boxlist2d = boxlist2d.clone()
ymin, xmin, ymax, xmax = torch.unbind(boxlist2d, dim=2)
ymin = ymin * float(H)
ymax = ymax * float(H)
xmin = xmin * float(W)
xmax = xmax * float(W)
boxlist2d = torch.stack([ymin, xmin, ymax, xmax], dim=2)
return boxlist2d
def unnormalize_box2d(box2d, H, W):
return unnormalize_boxlist2d(box2d.unsqueeze(1), H, W).squeeze(1)
def normalize_box2d(box2d, H, W):
return normalize_boxlist2d(box2d.unsqueeze(1), H, W).squeeze(1)
def get_gaussian_kernel_2d(channels, kernel_size=3, sigma=2.0, mid_one=False):
C = channels
xy_grid = gridcloud2d(C, kernel_size, kernel_size) # C x N x 2
mean = (kernel_size - 1)/2.0
variance = sigma**2.0
gaussian_kernel = (1.0/(2.0*np.pi*variance)**1.5) * torch.exp(-torch.sum((xy_grid - mean)**2.0, dim=-1) / (2.0*variance)) # C X N
gaussian_kernel = gaussian_kernel.view(C, 1, kernel_size, kernel_size) # C x 1 x 3 x 3
kernel_sum = torch.sum(gaussian_kernel, dim=(2,3), keepdim=True)
gaussian_kernel = gaussian_kernel / kernel_sum # normalize
if mid_one:
# normalize so that the middle element is 1
maxval = gaussian_kernel[:,:,(kernel_size//2),(kernel_size//2)].reshape(C, 1, 1, 1)
gaussian_kernel = gaussian_kernel / maxval
return gaussian_kernel
def gaussian_blur_2d(input, kernel_size=3, sigma=2.0, reflect_pad=False, mid_one=False):
B, C, Z, X = input.shape
kernel = get_gaussian_kernel_2d(C, kernel_size, sigma, mid_one=mid_one)
if reflect_pad:
pad = (kernel_size - 1)//2
out = F.pad(input, (pad, pad, pad, pad), mode='reflect')
out = F.conv2d(out, kernel, padding=0, groups=C)
else:
out = F.conv2d(input, kernel, padding=(kernel_size - 1)//2, groups=C)
return out
def gradient2d(x, absolute=False, square=False, return_sum=False):
# x should be B x C x H x W
dh = x[:, :, 1:, :] - x[:, :, :-1, :]
dw = x[:, :, :, 1:] - x[:, :, :, :-1]
zeros = torch.zeros_like(x)
zero_h = zeros[:, :, 0:1, :]
zero_w = zeros[:, :, :, 0:1]
dh = torch.cat([dh, zero_h], axis=2)
dw = torch.cat([dw, zero_w], axis=3)
if absolute:
dh = torch.abs(dh)
dw = torch.abs(dw)
if square:
dh = dh ** 2
dw = dw ** 2
if return_sum:
return dh+dw
else:
return dh, dw