Spaces:
Runtime error
Runtime error
File size: 16,997 Bytes
e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 ee724af e27b2a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import os
import torch
import json
import time
import logging
from datetime import datetime
from threading import Thread
from queue import Queue
from transformers import AutoTokenizer, AutoModelForCausalLM
# Configuration
PRIMARY_MODEL = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # First model to try
SECONDARY_MODEL = "facebook/opt-1.3b" # More powerful backup model
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BATCH_SIZE = 5 # Process 5 chapters at a time
MAX_RETRIES = 3
OUTPUT_DIR = "calculus_textbook_output"
LOG_FILE = "textbook_generation.log"
# Setup logging
os.makedirs(OUTPUT_DIR, exist_ok=True)
logging.basicConfig(
filename=os.path.join(OUTPUT_DIR, LOG_FILE),
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
class ModelManager:
"""Manages loading and switching between language models for text generation."""
def __init__(self):
self.models = {}
self.tokenizers = {}
self.current_model = None
def load_model(self, model_name):
"""Load a model and its tokenizer if not already loaded."""
if model_name not in self.models:
try:
logging.info(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map="auto" if DEVICE == "cuda" else None
)
model.eval()
self.models[model_name] = model
self.tokenizers[model_name] = tokenizer
logging.info(f"Successfully loaded model: {model_name}")
return True
except Exception as e:
logging.error(f"Failed to load model {model_name}: {str(e)}")
return False
return True
def set_current_model(self, model_name):
"""Set the current model to use for generation."""
if model_name not in self.models and not self.load_model(model_name):
return False
self.current_model = model_name
return True
def generate_text(self, prompt, max_length=1024):
"""Generate text using the current model."""
if not self.current_model:
raise ValueError("No model selected. Call set_current_model first.")
model = self.models[self.current_model]
tokenizer = self.tokenizers[self.current_model]
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate with some randomness for creativity
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_length,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated part
generated_text = response[len(tokenizer.decode(inputs['input_ids'][0], skip_special_tokens=True)):].strip()
return generated_text
class CalculusTextbookGenerator:
"""Generates a complete calculus textbook with questions and solutions."""
def __init__(self):
self.model_manager = ModelManager()
self.textbook_data = self.create_initial_textbook_structure()
def create_initial_textbook_structure(self):
"""Create the initial structure of the calculus textbook."""
return {
"books": [
{
"name": "Calculus 1: Early Transcendentals",
"details": "Introduction to single-variable calculus including limits, derivatives, and basic integration techniques.",
"chapters": [
{
"chapterTitle": "Chapter 6: Applications of Integration",
"subChapters": [
"6.1: Areas Between Curves",
"6.2: Volumes",
"6.3: Volumes by Cylindrical Shells",
"6.4: Work",
"6.5: Average Value of a Function"
],
"questions": [] # Will be filled with generated questions
},
{
"chapterTitle": "Chapter 8: Further Applications of Integration",
"subChapters": [
"8.1: Arc Length",
"8.2: Area of a Surface of Revolution",
"8.3: Applications to Physics and Engineering",
"8.4: Applications to Economics and Biology",
"8.5: Probability"
],
"questions": []
},
{
"chapterTitle": "Chapter 9: Differential Equations",
"subChapters": [
"9.1: Modeling with Differential Equations",
"9.2: Direction Fields and Euler's Method",
"9.3: Separable Equations",
"9.4: Models for Population Growth",
"9.5: Linear Equations",
"9.6: Predator–Prey Systems"
],
"questions": []
},
{
"chapterTitle": "Chapter 10: Parametric Equations and Polar Coordinates",
"subChapters": [
"10.1: Curves Defined by Parametric Equations",
"10.2: Calculus with Parametric Curves",
"10.3: Polar Coordinates",
"10.4: Calculus in Polar Coordinates",
"10.5: Conic Sections",
"10.6: Conic Sections in Polar Coordinates"
],
"questions": []
},
{
"chapterTitle": "Chapter 11: Sequences, Series, and Power Series",
"subChapters": [
"11.1: Sequences",
"11.2: Series",
"11.3: The Integral Test and Estimates of Sums",
"11.4: The Comparison Tests",
"11.5: Alternating Series and Absolute Convergence",
"11.6: The Ratio and Root Tests",
"11.7: Power Series"
],
"questions": []
}
]
},
{
"name": "Calculus 2: Advanced Concepts",
"details": "Advances into series, sequences, techniques of integration, and vector calculus.",
"chapters": [
{
"chapterTitle": "Chapter 12: Vectors and the Geometry of Space",
"subChapters": [
"12.1: Three-Dimensional Coordinate Systems",
"12.2: Vectors",
"12.3: The Dot Product",
"12.4: The Cross Product",
"12.5: Equations of Lines and Planes",
"12.6: Cylinders and Quadric Surfaces"
],
"questions": []
},
{
"chapterTitle": "Chapter 13: Vector Functions",
"subChapters": [
"13.1: Vector Functions and Space Curves",
"13.2: Derivatives and Integrals of Vector Functions",
"13.3: Arc Length and Curvature",
"13.4: Motion in Space: Velocity and Acceleration"
],
"questions": []
},
{
"chapterTitle": "Chapter 14: Partial Derivatives",
"subChapters": [
"14.1: Functions of Several Variables",
"14.2: Limits and Continuity",
"14.3: Partial Derivatives",
"14.4: Tangent Planes and Linear Approximation",
"14.5: The Chain Rule"
],
"questions": []
}
]
}
]
}
def generate_question_set(self, chapter_title, subchapter_titles, num_questions=3):
"""Generate a set of questions with step-by-step solutions for a chapter."""
# Try the primary model first
self.model_manager.set_current_model(PRIMARY_MODEL)
prompt = f"""Create {num_questions} calculus questions with detailed step-by-step solutions for:
{chapter_title}
The questions should cover these subchapters:
{', '.join(subchapter_titles)}
For each question:
1. Write a clear, university-level calculus problem
2. Provide a comprehensive step-by-step solution with all math steps shown
3. Include a final answer
Format each question as:
QUESTION: [Problem statement]
SOLUTION:
Step 1: [First step with explanation]
Step 2: [Next step]
...
Final Answer: [The solution]
Make sure to use proper mathematical notation and include a variety of question types.
"""
try:
generated_content = self.model_manager.generate_text(prompt, max_length=2048)
# Check if the content looks good
if len(generated_content) < 200 or "QUESTION" not in generated_content:
# Try the secondary model if the primary one gave poor results
logging.warning(f"Primary model gave insufficient results for {chapter_title}. Trying secondary model.")
self.model_manager.set_current_model(SECONDARY_MODEL)
generated_content = self.model_manager.generate_text(prompt, max_length=2048)
# Parse the generated content into question objects
questions = self.parse_questions(generated_content)
if not questions or len(questions) == 0:
logging.warning(f"Failed to parse any questions from content for {chapter_title}")
return []
return questions
except Exception as e:
logging.error(f"Error generating questions for {chapter_title}: {str(e)}")
return []
def parse_questions(self, content):
"""Parse the generated content into structured question objects."""
questions = []
# Split by "QUESTION:" or similar markers
parts = content.split("QUESTION:")
for i, part in enumerate(parts):
if i == 0:
continue # Skip the first part (before the first QUESTION:)
try:
# Split into question and solution
if "SOLUTION:" in part:
question_text, solution = part.split("SOLUTION:", 1)
else:
# Try alternative formats
for marker in ["Solution:", "STEPS:", "Steps:"]:
if marker in part:
question_text, solution = part.split(marker, 1)
break
else:
question_text = part
solution = ""
questions.append({
"question": question_text.strip(),
"solution": solution.strip()
})
except Exception as e:
logging.error(f"Error parsing question {i}: {str(e)}")
continue
return questions
def worker_function(self, queue, results):
"""Worker thread function to process chapters from queue."""
while True:
item = queue.get()
if item is None: # None signals to exit
queue.task_done()
break
book_idx, chapter_idx, chapter = item
chapter_title = chapter["chapterTitle"]
subchapters = chapter.get("subChapters", [])
logging.info(f"Processing: {chapter_title}")
# Try to generate questions with retries
for attempt in range(MAX_RETRIES):
try:
questions = self.generate_question_set(chapter_title, subchapters, num_questions=4)
if questions:
# Save the questions to the chapter
self.textbook_data["books"][book_idx]["chapters"][chapter_idx]["questions"] = questions
logging.info(f"✓ Generated {len(questions)} questions for {chapter_title}")
break # Success, exit retry loop
else:
logging.warning(f"No questions generated for {chapter_title} on attempt {attempt+1}")
except Exception as e:
logging.error(f"Attempt {attempt+1}/{MAX_RETRIES} failed for {chapter_title}: {str(e)}")
time.sleep(2) # Wait before retrying
# Save current state to file
self.save_current_state()
queue.task_done()
def save_current_state(self):
"""Save the current state of the textbook generation."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
with open(os.path.join(OUTPUT_DIR, f"textbook_state_{timestamp}.json"), "w") as f:
json.dump(self.textbook_data, f, indent=2)
# Also save to a fixed filename for the latest state
with open(os.path.join(OUTPUT_DIR, "textbook_latest.json"), "w") as f:
json.dump(self.textbook_data, f, indent=2)
def process_in_batches(self):
"""Process all chapters in batches."""
queue = Queue()
# Queue all chapters for processing
for book_idx, book in enumerate(self.textbook_data["books"]):
for chapter_idx, chapter in enumerate(book["chapters"]):
queue.put((book_idx, chapter_idx, chapter))
# Create and start worker thread
worker = Thread(target=self.worker_function, args=(queue, None))
worker.daemon = True # Allow the program to exit even if the thread is running
worker.start()
# Process in batches
total_chapters = queue.qsize()
processed = 0
while processed < total_chapters:
# Wait for the batch to be processed
start_size = queue.qsize()
batch_size = min(BATCH_SIZE, start_size)
logging.info(f"Processing batch of {batch_size} chapters. {start_size} remaining.")
# Wait until this batch is done
while queue.qsize() > start_size - batch_size:
time.sleep(2)
processed += batch_size
logging.info(f"Batch complete. {processed}/{total_chapters} chapters processed.")
# Save current state
self.save_current_state()
# Signal worker to exit
queue.put(None)
worker.join()
# Save final state
self.save_current_state()
logging.info("All chapters processed. Textbook generation complete.")
def main():
start_time = datetime.now()
logging.info(f"Starting textbook generation at {start_time}")
generator = CalculusTextbookGenerator()
generator.process_in_batches()
end_time = datetime.now()
duration = end_time - start_time
logging.info(f"Textbook generation completed in {duration}")
logging.info(f"Final textbook saved to {os.path.join(OUTPUT_DIR, 'textbook_latest.json')}")
if __name__ == "__main__":
main() |