math / app.py
Kamocodes's picture
Create app.py
6fc87f8 verified
raw
history blame
11.1 kB
import gradio as gr
import json
import random
import math
# Define a list of topics with specific formulas and question templates
TOPICS = {
"Average Value": {
"formula": "f_avg = (1/(b-a)) * ∫[a,b] f(x) dx",
"functions": {
"easy": [
{"func": "x^2", "domain": [0, 2], "solution": "4/3"},
{"func": "sin(x)", "domain": [0, "π"], "solution": "2/π"},
{"func": "e^x", "domain": [0, 1], "solution": "(e-1)"},
{"func": "x", "domain": [1, 4], "solution": "5/2"},
{"func": "x^3", "domain": [0, 1], "solution": "1/4"}
],
"hard": [
{"func": "x*sin(x)", "domain": [0, "π"], "solution": "π/2"},
{"func": "ln(x)", "domain": [1, "e"], "solution": "1-1/e"},
{"func": "x^2*e^x", "domain": [0, 1], "solution": "2e-2"},
{"func": "1/(1+x^2)", "domain": [0, 1], "solution": "π/4"},
{"func": "sqrt(x)", "domain": [0, 4], "solution": "4/3"}
]
}
},
"Arc Length": {
"formula": "L = ∫[a,b] sqrt(1 + (f'(x))^2) dx",
"functions": {
"easy": [
{"func": "x^2", "domain": [0, 1], "solution": "approx. 1.4789"},
{"func": "x^(3/2)", "domain": [0, 1], "solution": "approx. 1.1919"},
{"func": "2x+1", "domain": [0, 2], "solution": "sqrt(5)*2"},
{"func": "x^3", "domain": [0, 1], "solution": "approx. 1.0801"},
{"func": "sin(x)", "domain": [0, "π/2"], "solution": "approx. 1.9118"}
],
"hard": [
{"func": "ln(x)", "domain": [1, 3], "solution": "approx. 2.3861"},
{"func": "e^x", "domain": [0, 1], "solution": "approx. 1.1752"},
{"func": "cosh(x)", "domain": [0, 1], "solution": "sinh(1)"},
{"func": "x^2 - ln(x)", "domain": [1, 2], "solution": "approx. 3.1623"},
{"func": "parametric: x=cos(t), y=sin(t) for t∈[0,π]", "domain": [0, "π"], "solution": "π"}
]
}
},
"Surface Area": {
"formula": "S = 2π * ∫[a,b] f(x) * sqrt(1 + (f'(x))^2) dx",
"functions": {
"easy": [
{"func": "x", "domain": [0, 3], "solution": "2π*4.5"},
{"func": "x^2", "domain": [0, 1], "solution": "approx. 2π*0.7169"},
{"func": "sqrt(x)", "domain": [0, 4], "solution": "approx. 2π*4.5177"},
{"func": "1", "domain": [0, 2], "solution": "2π*2"},
{"func": "x/2", "domain": [0, 4], "solution": "2π*4.1231"}
],
"hard": [
{"func": "x^3", "domain": [0, 1], "solution": "approx. 2π*0.6004"},
{"func": "e^x", "domain": [0, 1], "solution": "approx. 2π*1.1793"},
{"func": "sin(x)", "domain": [0, "π/2"], "solution": "approx. 2π*0.6366"},
{"func": "1/x", "domain": [1, 2], "solution": "approx. 2π*1.1478"},
{"func": "ln(x)", "domain": [1, 2], "solution": "approx. 2π*0.5593"}
]
}
},
"Differential Equations": {
"formula": "Various types",
"functions": {
"easy": [
{"func": "dy/dx = 2x", "domain": ["y(0)=1"], "solution": "y = x^2 + 1"},
{"func": "dy/dx = y", "domain": ["y(0)=1"], "solution": "y = e^x"},
{"func": "dy/dx = 3x^2", "domain": ["y(0)=2"], "solution": "y = x^3 + 2"},
{"func": "dy/dx = -y", "domain": ["y(0)=4"], "solution": "y = 4e^(-x)"},
{"func": "dy/dx = x+1", "domain": ["y(0)=-2"], "solution": "y = x^2/2 + x - 2"}
],
"hard": [
{"func": "y'' + 4y = 0", "domain": ["y(0)=1, y'(0)=0"], "solution": "y = cos(2x)"},
{"func": "y'' - y = x", "domain": ["y(0)=0, y'(0)=1"], "solution": "y = e^x/2 - e^(-x)/2 - x"},
{"func": "y' + y = e^x", "domain": ["y(0)=0"], "solution": "y = xe^x"},
{"func": "y'' + 2y' + y = 0", "domain": ["y(0)=1, y'(0)=-1"], "solution": "y = (1-x)e^(-x)"},
{"func": "y'' - 2y' + y = x^2", "domain": ["y(0)=1, y'(0)=1"], "solution": "y = (x^2)/2 + 2x + 1"}
]
}
},
"Area and Volume": {
"formula": "A = ∫[a,b] f(x) dx, V = π * ∫[a,b] [f(x)]^2 dx",
"functions": {
"easy": [
{"func": "f(x) = x^2, find area under the curve", "domain": [0, 3], "solution": "9"},
{"func": "f(x) = sin(x), find area under the curve", "domain": [0, "π"], "solution": "2"},
{"func": "f(x) = 4-x^2, find area under the curve", "domain": [-2, 2], "solution": "16/3"},
{"func": "f(x) = sqrt(x), find volume of revolution around x-axis", "domain": [0, 4], "solution": "16π/3"},
{"func": "f(x) = x, find volume of revolution around x-axis", "domain": [0, 2], "solution": "8π/3"}
],
"hard": [
{"func": "Area between f(x) = x^2 and g(x) = x^3", "domain": [0, 1], "solution": "1/12"},
{"func": "Volume of solid bounded by z = 4-x^2-y^2 and z = 0", "domain": ["x^2+y^2≤4"], "solution": "8π"},
{"func": "Volume of solid formed by rotating region bounded by y = x^2, y = 0, x = 2 around y-axis", "domain": [0, 2], "solution": "8π/5"},
{"func": "Area between f(x) = sin(x) and g(x) = cos(x)", "domain": [0, "π/4"], "solution": "sqrt(2)-1"},
{"func": "Volume of solid formed by rotating region bounded by y = e^x, y = 0, x = 0, x = 1 around x-axis", "domain": [0, 1], "solution": "π(e^2-1)/2"}
]
}
},
"Parametric Curves and Equations": {
"formula": "x = x(t), y = y(t), Arc length = ∫[a,b] sqrt((dx/dt)^2 + (dy/dt)^2) dt",
"functions": {
"easy": [
{"func": "x = t, y = t^2, find dy/dx", "domain": ["t"], "solution": "dy/dx = 2t"},
{"func": "x = cos(t), y = sin(t), find the arc length", "domain": [0, "π/2"], "solution": "π/2"},
{"func": "x = t^2, y = t^3, find dy/dx", "domain": ["t"], "solution": "dy/dx = 3t/2"},
{"func": "x = 2t, y = t^2, find the area under the curve", "domain": [0, 2], "solution": "4/3"},
{"func": "x = t, y = sin(t), find dy/dx", "domain": ["t"], "solution": "dy/dx = cos(t)"}
],
"hard": [
{"func": "x = e^t*cos(t), y = e^t*sin(t), find dy/dx", "domain": ["t"], "solution": "dy/dx = tan(t) + 1"},
{"func": "x = t-sin(t), y = 1-cos(t), find the arc length", "domain": [0, "2π"], "solution": "8"},
{"func": "x = ln(sec(t)), y = tan(t), find dy/dx", "domain": ["t"], "solution": "dy/dx = sec^2(t)"},
{"func": "x = cos^3(t), y = sin^3(t), find the area enclosed", "domain": [0, "2π"], "solution": "3π/8"},
{"func": "x = cos(t)+t*sin(t), y = sin(t)-t*cos(t), find the arc length", "domain": [0, "2π"], "solution": "2π*sqrt(1+4π^2)"}
]
}
}
}
# Function to generate a single question
def generate_question(topic_name, difficulty):
topic_data = TOPICS[topic_name]
formula = topic_data["formula"]
# Select a random function from the available ones for this topic and difficulty
function_data = random.choice(topic_data["functions"][difficulty])
func = function_data["func"]
domain = function_data["domain"]
solution = function_data["solution"]
# Format domain for display
if isinstance(domain, list) and len(domain) == 2:
domain_str = f"[{domain[0]}, {domain[1]}]"
else:
domain_str = str(domain)
# Create question and solution based on difficulty
if difficulty == "easy":
question = f"Find the {topic_name.lower()} of {func} over the domain {domain_str}."
solution_text = f"Step 1: Apply the formula for {topic_name.lower()}: {formula}\n\n"
solution_text += f"Step 2: Substitute f(x) = {func} and evaluate over {domain_str}\n\n"
solution_text += f"Step 3: Solve the resulting integral or calculation\n\n"
solution_text += f"Final Answer: {solution}"
else:
question = f"Compute the {topic_name.lower()} for {func} over {domain_str}."
solution_text = f"Step 1: Apply the formula for {topic_name.lower()}: {formula}\n\n"
solution_text += f"Step 2: For {func}, substitute into the formula and evaluate over {domain_str}\n\n"
solution_text += f"Step 3: This requires advanced integration techniques or careful analysis\n\n"
solution_text += f"Step 4: After simplification and evaluation of the integral\n\n"
solution_text += f"Final Answer: {solution}"
return question, solution_text
# Function to generate multiple questions
def generate_multiple_questions(topic_name, difficulty, count):
questions = []
solutions = []
for _ in range(count):
question, solution = generate_question(topic_name, difficulty)
questions.append(question)
solutions.append(solution)
combined_questions = "\n\n".join([f"{i+1}. {q}" for i, q in enumerate(questions)])
combined_solutions = "\n\n" + "-"*50 + "\n\n".join([f"Solution {i+1}:\n{s}" for i, s in enumerate(solutions)])
return combined_questions, combined_solutions
# Gradio app function
def generate_calculus_questions(topic, difficulty, count):
count = int(count) # Convert to int in case it's a string
questions, solutions = generate_multiple_questions(topic, difficulty, count)
return questions, solutions
# Create the Gradio interface
with gr.Blocks(title="Calculus Question Generator") as demo:
gr.Markdown("# Calculus Question Generator")
gr.Markdown("Select a topic, difficulty level, and the number of questions to generate.")
with gr.Row():
with gr.Column():
topic = gr.Dropdown(
choices=list(TOPICS.keys()),
label="Calculus Topic",
value="Average Value"
)
difficulty = gr.Radio(
choices=["easy", "hard"],
label="Difficulty Level",
value="easy"
)
count = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Number of Questions"
)
generate_button = gr.Button("Generate Questions")
with gr.Column():
questions_output = gr.Textbox(label="Generated Questions", lines=10)
solutions_output = gr.Textbox(label="Solutions", lines=15)
generate_button.click(
generate_calculus_questions,
inputs=[topic, difficulty, count],
outputs=[questions_output, solutions_output]
)
gr.Markdown("### Created by KamogeloMosiai")
# Launch the app
if __name__ == "__main__":
demo.launch()