math / app.py
Kamocodes's picture
Update app.py
e27b2a0 verified
import os
import torch
import json
import time
import logging
from datetime import datetime
from threading import Thread
from queue import Queue
from transformers import AutoTokenizer, AutoModelForCausalLM
# Configuration
PRIMARY_MODEL = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # First model to try
SECONDARY_MODEL = "facebook/opt-1.3b" # More powerful backup model
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BATCH_SIZE = 5 # Process 5 chapters at a time
MAX_RETRIES = 3
OUTPUT_DIR = "calculus_textbook_output"
LOG_FILE = "textbook_generation.log"
# Setup logging
os.makedirs(OUTPUT_DIR, exist_ok=True)
logging.basicConfig(
filename=os.path.join(OUTPUT_DIR, LOG_FILE),
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
class ModelManager:
"""Manages loading and switching between language models for text generation."""
def __init__(self):
self.models = {}
self.tokenizers = {}
self.current_model = None
def load_model(self, model_name):
"""Load a model and its tokenizer if not already loaded."""
if model_name not in self.models:
try:
logging.info(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map="auto" if DEVICE == "cuda" else None
)
model.eval()
self.models[model_name] = model
self.tokenizers[model_name] = tokenizer
logging.info(f"Successfully loaded model: {model_name}")
return True
except Exception as e:
logging.error(f"Failed to load model {model_name}: {str(e)}")
return False
return True
def set_current_model(self, model_name):
"""Set the current model to use for generation."""
if model_name not in self.models and not self.load_model(model_name):
return False
self.current_model = model_name
return True
def generate_text(self, prompt, max_length=1024):
"""Generate text using the current model."""
if not self.current_model:
raise ValueError("No model selected. Call set_current_model first.")
model = self.models[self.current_model]
tokenizer = self.tokenizers[self.current_model]
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate with some randomness for creativity
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_length,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated part
generated_text = response[len(tokenizer.decode(inputs['input_ids'][0], skip_special_tokens=True)):].strip()
return generated_text
class CalculusTextbookGenerator:
"""Generates a complete calculus textbook with questions and solutions."""
def __init__(self):
self.model_manager = ModelManager()
self.textbook_data = self.create_initial_textbook_structure()
def create_initial_textbook_structure(self):
"""Create the initial structure of the calculus textbook."""
return {
"books": [
{
"name": "Calculus 1: Early Transcendentals",
"details": "Introduction to single-variable calculus including limits, derivatives, and basic integration techniques.",
"chapters": [
{
"chapterTitle": "Chapter 6: Applications of Integration",
"subChapters": [
"6.1: Areas Between Curves",
"6.2: Volumes",
"6.3: Volumes by Cylindrical Shells",
"6.4: Work",
"6.5: Average Value of a Function"
],
"questions": [] # Will be filled with generated questions
},
{
"chapterTitle": "Chapter 8: Further Applications of Integration",
"subChapters": [
"8.1: Arc Length",
"8.2: Area of a Surface of Revolution",
"8.3: Applications to Physics and Engineering",
"8.4: Applications to Economics and Biology",
"8.5: Probability"
],
"questions": []
},
{
"chapterTitle": "Chapter 9: Differential Equations",
"subChapters": [
"9.1: Modeling with Differential Equations",
"9.2: Direction Fields and Euler's Method",
"9.3: Separable Equations",
"9.4: Models for Population Growth",
"9.5: Linear Equations",
"9.6: Predator–Prey Systems"
],
"questions": []
},
{
"chapterTitle": "Chapter 10: Parametric Equations and Polar Coordinates",
"subChapters": [
"10.1: Curves Defined by Parametric Equations",
"10.2: Calculus with Parametric Curves",
"10.3: Polar Coordinates",
"10.4: Calculus in Polar Coordinates",
"10.5: Conic Sections",
"10.6: Conic Sections in Polar Coordinates"
],
"questions": []
},
{
"chapterTitle": "Chapter 11: Sequences, Series, and Power Series",
"subChapters": [
"11.1: Sequences",
"11.2: Series",
"11.3: The Integral Test and Estimates of Sums",
"11.4: The Comparison Tests",
"11.5: Alternating Series and Absolute Convergence",
"11.6: The Ratio and Root Tests",
"11.7: Power Series"
],
"questions": []
}
]
},
{
"name": "Calculus 2: Advanced Concepts",
"details": "Advances into series, sequences, techniques of integration, and vector calculus.",
"chapters": [
{
"chapterTitle": "Chapter 12: Vectors and the Geometry of Space",
"subChapters": [
"12.1: Three-Dimensional Coordinate Systems",
"12.2: Vectors",
"12.3: The Dot Product",
"12.4: The Cross Product",
"12.5: Equations of Lines and Planes",
"12.6: Cylinders and Quadric Surfaces"
],
"questions": []
},
{
"chapterTitle": "Chapter 13: Vector Functions",
"subChapters": [
"13.1: Vector Functions and Space Curves",
"13.2: Derivatives and Integrals of Vector Functions",
"13.3: Arc Length and Curvature",
"13.4: Motion in Space: Velocity and Acceleration"
],
"questions": []
},
{
"chapterTitle": "Chapter 14: Partial Derivatives",
"subChapters": [
"14.1: Functions of Several Variables",
"14.2: Limits and Continuity",
"14.3: Partial Derivatives",
"14.4: Tangent Planes and Linear Approximation",
"14.5: The Chain Rule"
],
"questions": []
}
]
}
]
}
def generate_question_set(self, chapter_title, subchapter_titles, num_questions=3):
"""Generate a set of questions with step-by-step solutions for a chapter."""
# Try the primary model first
self.model_manager.set_current_model(PRIMARY_MODEL)
prompt = f"""Create {num_questions} calculus questions with detailed step-by-step solutions for:
{chapter_title}
The questions should cover these subchapters:
{', '.join(subchapter_titles)}
For each question:
1. Write a clear, university-level calculus problem
2. Provide a comprehensive step-by-step solution with all math steps shown
3. Include a final answer
Format each question as:
QUESTION: [Problem statement]
SOLUTION:
Step 1: [First step with explanation]
Step 2: [Next step]
...
Final Answer: [The solution]
Make sure to use proper mathematical notation and include a variety of question types.
"""
try:
generated_content = self.model_manager.generate_text(prompt, max_length=2048)
# Check if the content looks good
if len(generated_content) < 200 or "QUESTION" not in generated_content:
# Try the secondary model if the primary one gave poor results
logging.warning(f"Primary model gave insufficient results for {chapter_title}. Trying secondary model.")
self.model_manager.set_current_model(SECONDARY_MODEL)
generated_content = self.model_manager.generate_text(prompt, max_length=2048)
# Parse the generated content into question objects
questions = self.parse_questions(generated_content)
if not questions or len(questions) == 0:
logging.warning(f"Failed to parse any questions from content for {chapter_title}")
return []
return questions
except Exception as e:
logging.error(f"Error generating questions for {chapter_title}: {str(e)}")
return []
def parse_questions(self, content):
"""Parse the generated content into structured question objects."""
questions = []
# Split by "QUESTION:" or similar markers
parts = content.split("QUESTION:")
for i, part in enumerate(parts):
if i == 0:
continue # Skip the first part (before the first QUESTION:)
try:
# Split into question and solution
if "SOLUTION:" in part:
question_text, solution = part.split("SOLUTION:", 1)
else:
# Try alternative formats
for marker in ["Solution:", "STEPS:", "Steps:"]:
if marker in part:
question_text, solution = part.split(marker, 1)
break
else:
question_text = part
solution = ""
questions.append({
"question": question_text.strip(),
"solution": solution.strip()
})
except Exception as e:
logging.error(f"Error parsing question {i}: {str(e)}")
continue
return questions
def worker_function(self, queue, results):
"""Worker thread function to process chapters from queue."""
while True:
item = queue.get()
if item is None: # None signals to exit
queue.task_done()
break
book_idx, chapter_idx, chapter = item
chapter_title = chapter["chapterTitle"]
subchapters = chapter.get("subChapters", [])
logging.info(f"Processing: {chapter_title}")
# Try to generate questions with retries
for attempt in range(MAX_RETRIES):
try:
questions = self.generate_question_set(chapter_title, subchapters, num_questions=4)
if questions:
# Save the questions to the chapter
self.textbook_data["books"][book_idx]["chapters"][chapter_idx]["questions"] = questions
logging.info(f"✓ Generated {len(questions)} questions for {chapter_title}")
break # Success, exit retry loop
else:
logging.warning(f"No questions generated for {chapter_title} on attempt {attempt+1}")
except Exception as e:
logging.error(f"Attempt {attempt+1}/{MAX_RETRIES} failed for {chapter_title}: {str(e)}")
time.sleep(2) # Wait before retrying
# Save current state to file
self.save_current_state()
queue.task_done()
def save_current_state(self):
"""Save the current state of the textbook generation."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
with open(os.path.join(OUTPUT_DIR, f"textbook_state_{timestamp}.json"), "w") as f:
json.dump(self.textbook_data, f, indent=2)
# Also save to a fixed filename for the latest state
with open(os.path.join(OUTPUT_DIR, "textbook_latest.json"), "w") as f:
json.dump(self.textbook_data, f, indent=2)
def process_in_batches(self):
"""Process all chapters in batches."""
queue = Queue()
# Queue all chapters for processing
for book_idx, book in enumerate(self.textbook_data["books"]):
for chapter_idx, chapter in enumerate(book["chapters"]):
queue.put((book_idx, chapter_idx, chapter))
# Create and start worker thread
worker = Thread(target=self.worker_function, args=(queue, None))
worker.daemon = True # Allow the program to exit even if the thread is running
worker.start()
# Process in batches
total_chapters = queue.qsize()
processed = 0
while processed < total_chapters:
# Wait for the batch to be processed
start_size = queue.qsize()
batch_size = min(BATCH_SIZE, start_size)
logging.info(f"Processing batch of {batch_size} chapters. {start_size} remaining.")
# Wait until this batch is done
while queue.qsize() > start_size - batch_size:
time.sleep(2)
processed += batch_size
logging.info(f"Batch complete. {processed}/{total_chapters} chapters processed.")
# Save current state
self.save_current_state()
# Signal worker to exit
queue.put(None)
worker.join()
# Save final state
self.save_current_state()
logging.info("All chapters processed. Textbook generation complete.")
def main():
start_time = datetime.now()
logging.info(f"Starting textbook generation at {start_time}")
generator = CalculusTextbookGenerator()
generator.process_in_batches()
end_time = datetime.now()
duration = end_time - start_time
logging.info(f"Textbook generation completed in {duration}")
logging.info(f"Final textbook saved to {os.path.join(OUTPUT_DIR, 'textbook_latest.json')}")
if __name__ == "__main__":
main()