Spaces:
Running
Running
import numpy as np | |
from gym import utils | |
from gym.envs.mujoco import MuJocoPyEnv | |
from gym.spaces import Box | |
DEFAULT_CAMERA_CONFIG = { | |
"trackbodyid": 1, | |
"distance": 4.0, | |
"lookat": np.array((0.0, 0.0, 2.0)), | |
"elevation": -20.0, | |
} | |
def mass_center(model, sim): | |
mass = np.expand_dims(model.body_mass, axis=1) | |
xpos = sim.data.xipos | |
return (np.sum(mass * xpos, axis=0) / np.sum(mass))[0:2].copy() | |
class HumanoidEnv(MuJocoPyEnv, utils.EzPickle): | |
metadata = { | |
"render_modes": [ | |
"human", | |
"rgb_array", | |
"depth_array", | |
], | |
"render_fps": 67, | |
} | |
def __init__( | |
self, | |
xml_file="humanoid.xml", | |
forward_reward_weight=1.25, | |
ctrl_cost_weight=0.1, | |
contact_cost_weight=5e-7, | |
contact_cost_range=(-np.inf, 10.0), | |
healthy_reward=5.0, | |
terminate_when_unhealthy=True, | |
healthy_z_range=(1.0, 2.0), | |
reset_noise_scale=1e-2, | |
exclude_current_positions_from_observation=True, | |
**kwargs | |
): | |
utils.EzPickle.__init__( | |
self, | |
xml_file, | |
forward_reward_weight, | |
ctrl_cost_weight, | |
contact_cost_weight, | |
contact_cost_range, | |
healthy_reward, | |
terminate_when_unhealthy, | |
healthy_z_range, | |
reset_noise_scale, | |
exclude_current_positions_from_observation, | |
**kwargs | |
) | |
self._forward_reward_weight = forward_reward_weight | |
self._ctrl_cost_weight = ctrl_cost_weight | |
self._contact_cost_weight = contact_cost_weight | |
self._contact_cost_range = contact_cost_range | |
self._healthy_reward = healthy_reward | |
self._terminate_when_unhealthy = terminate_when_unhealthy | |
self._healthy_z_range = healthy_z_range | |
self._reset_noise_scale = reset_noise_scale | |
self._exclude_current_positions_from_observation = ( | |
exclude_current_positions_from_observation | |
) | |
if exclude_current_positions_from_observation: | |
observation_space = Box( | |
low=-np.inf, high=np.inf, shape=(376,), dtype=np.float64 | |
) | |
else: | |
observation_space = Box( | |
low=-np.inf, high=np.inf, shape=(378,), dtype=np.float64 | |
) | |
MuJocoPyEnv.__init__( | |
self, xml_file, 5, observation_space=observation_space, **kwargs | |
) | |
def healthy_reward(self): | |
return ( | |
float(self.is_healthy or self._terminate_when_unhealthy) | |
* self._healthy_reward | |
) | |
def control_cost(self, action): | |
control_cost = self._ctrl_cost_weight * np.sum(np.square(self.sim.data.ctrl)) | |
return control_cost | |
def contact_cost(self): | |
contact_forces = self.sim.data.cfrc_ext | |
contact_cost = self._contact_cost_weight * np.sum(np.square(contact_forces)) | |
min_cost, max_cost = self._contact_cost_range | |
contact_cost = np.clip(contact_cost, min_cost, max_cost) | |
return contact_cost | |
def is_healthy(self): | |
min_z, max_z = self._healthy_z_range | |
is_healthy = min_z < self.sim.data.qpos[2] < max_z | |
return is_healthy | |
def terminated(self): | |
terminated = (not self.is_healthy) if self._terminate_when_unhealthy else False | |
return terminated | |
def _get_obs(self): | |
position = self.sim.data.qpos.flat.copy() | |
velocity = self.sim.data.qvel.flat.copy() | |
com_inertia = self.sim.data.cinert.flat.copy() | |
com_velocity = self.sim.data.cvel.flat.copy() | |
actuator_forces = self.sim.data.qfrc_actuator.flat.copy() | |
external_contact_forces = self.sim.data.cfrc_ext.flat.copy() | |
if self._exclude_current_positions_from_observation: | |
position = position[2:] | |
return np.concatenate( | |
( | |
position, | |
velocity, | |
com_inertia, | |
com_velocity, | |
actuator_forces, | |
external_contact_forces, | |
) | |
) | |
def step(self, action): | |
xy_position_before = mass_center(self.model, self.sim) | |
self.do_simulation(action, self.frame_skip) | |
xy_position_after = mass_center(self.model, self.sim) | |
xy_velocity = (xy_position_after - xy_position_before) / self.dt | |
x_velocity, y_velocity = xy_velocity | |
ctrl_cost = self.control_cost(action) | |
contact_cost = self.contact_cost | |
forward_reward = self._forward_reward_weight * x_velocity | |
healthy_reward = self.healthy_reward | |
rewards = forward_reward + healthy_reward | |
costs = ctrl_cost + contact_cost | |
observation = self._get_obs() | |
reward = rewards - costs | |
terminated = self.terminated | |
info = { | |
"reward_linvel": forward_reward, | |
"reward_quadctrl": -ctrl_cost, | |
"reward_alive": healthy_reward, | |
"reward_impact": -contact_cost, | |
"x_position": xy_position_after[0], | |
"y_position": xy_position_after[1], | |
"distance_from_origin": np.linalg.norm(xy_position_after, ord=2), | |
"x_velocity": x_velocity, | |
"y_velocity": y_velocity, | |
"forward_reward": forward_reward, | |
} | |
if self.render_mode == "human": | |
self.render() | |
return observation, reward, terminated, False, info | |
def reset_model(self): | |
noise_low = -self._reset_noise_scale | |
noise_high = self._reset_noise_scale | |
qpos = self.init_qpos + self.np_random.uniform( | |
low=noise_low, high=noise_high, size=self.model.nq | |
) | |
qvel = self.init_qvel + self.np_random.uniform( | |
low=noise_low, high=noise_high, size=self.model.nv | |
) | |
self.set_state(qpos, qvel) | |
observation = self._get_obs() | |
return observation | |
def viewer_setup(self): | |
assert self.viewer is not None | |
for key, value in DEFAULT_CAMERA_CONFIG.items(): | |
if isinstance(value, np.ndarray): | |
getattr(self.viewer.cam, key)[:] = value | |
else: | |
setattr(self.viewer.cam, key, value) | |