Spaces:
Running
Running
""" | |
Generators for random intersection graphs. | |
""" | |
import networkx as nx | |
from networkx.utils import py_random_state | |
__all__ = [ | |
"uniform_random_intersection_graph", | |
"k_random_intersection_graph", | |
"general_random_intersection_graph", | |
] | |
def uniform_random_intersection_graph(n, m, p, seed=None): | |
"""Returns a uniform random intersection graph. | |
Parameters | |
---------- | |
n : int | |
The number of nodes in the first bipartite set (nodes) | |
m : int | |
The number of nodes in the second bipartite set (attributes) | |
p : float | |
Probability of connecting nodes between bipartite sets | |
seed : integer, random_state, or None (default) | |
Indicator of random number generation state. | |
See :ref:`Randomness<randomness>`. | |
See Also | |
-------- | |
gnp_random_graph | |
References | |
---------- | |
.. [1] K.B. Singer-Cohen, Random Intersection Graphs, 1995, | |
PhD thesis, Johns Hopkins University | |
.. [2] Fill, J. A., Scheinerman, E. R., and Singer-Cohen, K. B., | |
Random intersection graphs when m = !(n): | |
An equivalence theorem relating the evolution of the g(n, m, p) | |
and g(n, p) models. Random Struct. Algorithms 16, 2 (2000), 156–176. | |
""" | |
from networkx.algorithms import bipartite | |
G = bipartite.random_graph(n, m, p, seed) | |
return nx.projected_graph(G, range(n)) | |
def k_random_intersection_graph(n, m, k, seed=None): | |
"""Returns a intersection graph with randomly chosen attribute sets for | |
each node that are of equal size (k). | |
Parameters | |
---------- | |
n : int | |
The number of nodes in the first bipartite set (nodes) | |
m : int | |
The number of nodes in the second bipartite set (attributes) | |
k : float | |
Size of attribute set to assign to each node. | |
seed : integer, random_state, or None (default) | |
Indicator of random number generation state. | |
See :ref:`Randomness<randomness>`. | |
See Also | |
-------- | |
gnp_random_graph, uniform_random_intersection_graph | |
References | |
---------- | |
.. [1] Godehardt, E., and Jaworski, J. | |
Two models of random intersection graphs and their applications. | |
Electronic Notes in Discrete Mathematics 10 (2001), 129--132. | |
""" | |
G = nx.empty_graph(n + m) | |
mset = range(n, n + m) | |
for v in range(n): | |
targets = seed.sample(mset, k) | |
G.add_edges_from(zip([v] * len(targets), targets)) | |
return nx.projected_graph(G, range(n)) | |
def general_random_intersection_graph(n, m, p, seed=None): | |
"""Returns a random intersection graph with independent probabilities | |
for connections between node and attribute sets. | |
Parameters | |
---------- | |
n : int | |
The number of nodes in the first bipartite set (nodes) | |
m : int | |
The number of nodes in the second bipartite set (attributes) | |
p : list of floats of length m | |
Probabilities for connecting nodes to each attribute | |
seed : integer, random_state, or None (default) | |
Indicator of random number generation state. | |
See :ref:`Randomness<randomness>`. | |
See Also | |
-------- | |
gnp_random_graph, uniform_random_intersection_graph | |
References | |
---------- | |
.. [1] Nikoletseas, S. E., Raptopoulos, C., and Spirakis, P. G. | |
The existence and efficient construction of large independent sets | |
in general random intersection graphs. In ICALP (2004), J. D´ıaz, | |
J. Karhum¨aki, A. Lepist¨o, and D. Sannella, Eds., vol. 3142 | |
of Lecture Notes in Computer Science, Springer, pp. 1029–1040. | |
""" | |
if len(p) != m: | |
raise ValueError("Probability list p must have m elements.") | |
G = nx.empty_graph(n + m) | |
mset = range(n, n + m) | |
for u in range(n): | |
for v, q in zip(mset, p): | |
if seed.random() < q: | |
G.add_edge(u, v) | |
return nx.projected_graph(G, range(n)) | |