Spaces:
Running
Running
# ## ML-Agent Learning (SAC) | |
# Contains an implementation of SAC as described in https://arxiv.org/abs/1801.01290 | |
# and implemented in https://github.com/hill-a/stable-baselines | |
from typing import cast | |
import numpy as np | |
from mlagents_envs.logging_util import get_logger | |
from mlagents_envs.base_env import BehaviorSpec | |
from mlagents.trainers.buffer import BufferKey | |
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer | |
from mlagents.trainers.trainer.off_policy_trainer import OffPolicyTrainer | |
from mlagents.trainers.policy.torch_policy import TorchPolicy | |
from mlagents.trainers.policy.policy import Policy | |
from mlagents.trainers.sac.optimizer_torch import TorchSACOptimizer, SACSettings | |
from mlagents.trainers.trajectory import Trajectory, ObsUtil | |
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers | |
from mlagents.trainers.settings import TrainerSettings | |
from mlagents.trainers.torch_entities.networks import SimpleActor | |
logger = get_logger(__name__) | |
BUFFER_TRUNCATE_PERCENT = 0.8 | |
TRAINER_NAME = "sac" | |
class SACTrainer(OffPolicyTrainer): | |
""" | |
The SACTrainer is an implementation of the SAC algorithm, with support | |
for discrete actions and recurrent networks. | |
""" | |
def __init__( | |
self, | |
behavior_name: str, | |
reward_buff_cap: int, | |
trainer_settings: TrainerSettings, | |
training: bool, | |
load: bool, | |
seed: int, | |
artifact_path: str, | |
): | |
""" | |
Responsible for collecting experiences and training SAC model. | |
:param behavior_name: The name of the behavior associated with trainer config | |
:param reward_buff_cap: Max reward history to track in the reward buffer | |
:param trainer_settings: The parameters for the trainer. | |
:param training: Whether the trainer is set for training. | |
:param load: Whether the model should be loaded. | |
:param seed: The seed the model will be initialized with | |
:param artifact_path: The directory within which to store artifacts from this trainer. | |
""" | |
super().__init__( | |
behavior_name, | |
reward_buff_cap, | |
trainer_settings, | |
training, | |
load, | |
seed, | |
artifact_path, | |
) | |
self.seed = seed | |
self.policy: TorchPolicy = None # type: ignore | |
self.optimizer: TorchSACOptimizer = None # type: ignore | |
self.hyperparameters: SACSettings = cast( | |
SACSettings, trainer_settings.hyperparameters | |
) | |
self._step = 0 | |
# Don't divide by zero | |
self.update_steps = 1 | |
self.reward_signal_update_steps = 1 | |
self.steps_per_update = self.hyperparameters.steps_per_update | |
self.reward_signal_steps_per_update = ( | |
self.hyperparameters.reward_signal_steps_per_update | |
) | |
self.checkpoint_replay_buffer = self.hyperparameters.save_replay_buffer | |
def _process_trajectory(self, trajectory: Trajectory) -> None: | |
""" | |
Takes a trajectory and processes it, putting it into the replay buffer. | |
""" | |
super()._process_trajectory(trajectory) | |
last_step = trajectory.steps[-1] | |
agent_id = trajectory.agent_id # All the agents should have the same ID | |
agent_buffer_trajectory = trajectory.to_agentbuffer() | |
# Check if we used group rewards, warn if so. | |
self._warn_if_group_reward(agent_buffer_trajectory) | |
# Update the normalization | |
if self.is_training: | |
self.policy.actor.update_normalization(agent_buffer_trajectory) | |
self.optimizer.critic.update_normalization(agent_buffer_trajectory) | |
# Evaluate all reward functions for reporting purposes | |
self.collected_rewards["environment"][agent_id] += np.sum( | |
agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS] | |
) | |
for name, reward_signal in self.optimizer.reward_signals.items(): | |
evaluate_result = ( | |
reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength | |
) | |
# Report the reward signals | |
self.collected_rewards[name][agent_id] += np.sum(evaluate_result) | |
# Get all value estimates for reporting purposes | |
( | |
value_estimates, | |
_, | |
value_memories, | |
) = self.optimizer.get_trajectory_value_estimates( | |
agent_buffer_trajectory, trajectory.next_obs, trajectory.done_reached | |
) | |
if value_memories is not None: | |
agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories) | |
for name, v in value_estimates.items(): | |
self._stats_reporter.add_stat( | |
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value", | |
np.mean(v), | |
) | |
# Bootstrap using the last step rather than the bootstrap step if max step is reached. | |
# Set last element to duplicate obs and remove dones. | |
if last_step.interrupted: | |
last_step_obs = last_step.obs | |
for i, obs in enumerate(last_step_obs): | |
agent_buffer_trajectory[ObsUtil.get_name_at_next(i)][-1] = obs | |
agent_buffer_trajectory[BufferKey.DONE][-1] = False | |
self._append_to_update_buffer(agent_buffer_trajectory) | |
if trajectory.done_reached: | |
self._update_end_episode_stats(agent_id, self.optimizer) | |
def create_optimizer(self) -> TorchOptimizer: | |
return TorchSACOptimizer( # type: ignore | |
cast(TorchPolicy, self.policy), self.trainer_settings # type: ignore | |
) # type: ignore | |
def create_policy( | |
self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec | |
) -> TorchPolicy: | |
""" | |
Creates a policy with a PyTorch backend and SAC hyperparameters | |
:param parsed_behavior_id: | |
:param behavior_spec: specifications for policy construction | |
:return policy | |
""" | |
actor_cls = SimpleActor | |
actor_kwargs = {"conditional_sigma": True, "tanh_squash": True} | |
policy = TorchPolicy( | |
self.seed, | |
behavior_spec, | |
self.trainer_settings.network_settings, | |
actor_cls, | |
actor_kwargs, | |
) | |
self.maybe_load_replay_buffer() | |
return policy | |
def get_policy(self, name_behavior_id: str) -> Policy: | |
""" | |
Gets policy from trainer associated with name_behavior_id | |
:param name_behavior_id: full identifier of policy | |
""" | |
return self.policy | |
def get_trainer_name() -> str: | |
return TRAINER_NAME | |