Spaces:
Running
Running
import numpy as np | |
from gym import utils | |
from gym.envs.mujoco import MuJocoPyEnv | |
from gym.spaces import Box | |
class ReacherEnv(MuJocoPyEnv, utils.EzPickle): | |
metadata = { | |
"render_modes": [ | |
"human", | |
"rgb_array", | |
"depth_array", | |
], | |
"render_fps": 50, | |
} | |
def __init__(self, **kwargs): | |
utils.EzPickle.__init__(self, **kwargs) | |
observation_space = Box(low=-np.inf, high=np.inf, shape=(11,), dtype=np.float64) | |
MuJocoPyEnv.__init__( | |
self, "reacher.xml", 2, observation_space=observation_space, **kwargs | |
) | |
def step(self, a): | |
vec = self.get_body_com("fingertip") - self.get_body_com("target") | |
reward_dist = -np.linalg.norm(vec) | |
reward_ctrl = -np.square(a).sum() | |
reward = reward_dist + reward_ctrl | |
self.do_simulation(a, self.frame_skip) | |
if self.render_mode == "human": | |
self.render() | |
ob = self._get_obs() | |
return ( | |
ob, | |
reward, | |
False, | |
False, | |
dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl), | |
) | |
def viewer_setup(self): | |
assert self.viewer is not None | |
self.viewer.cam.trackbodyid = 0 | |
def reset_model(self): | |
qpos = ( | |
self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) | |
+ self.init_qpos | |
) | |
while True: | |
self.goal = self.np_random.uniform(low=-0.2, high=0.2, size=2) | |
if np.linalg.norm(self.goal) < 0.2: | |
break | |
qpos[-2:] = self.goal | |
qvel = self.init_qvel + self.np_random.uniform( | |
low=-0.005, high=0.005, size=self.model.nv | |
) | |
qvel[-2:] = 0 | |
self.set_state(qpos, qvel) | |
return self._get_obs() | |
def _get_obs(self): | |
theta = self.sim.data.qpos.flat[:2] | |
return np.concatenate( | |
[ | |
np.cos(theta), | |
np.sin(theta), | |
self.sim.data.qpos.flat[2:], | |
self.sim.data.qvel.flat[:2], | |
self.get_body_com("fingertip") - self.get_body_com("target"), | |
] | |
) | |