Kano001's picture
Upload 919 files
375a1cf verified
from contextlib import closing
from io import StringIO
from os import path
from typing import Optional
import numpy as np
from gym import Env, logger, spaces
from gym.envs.toy_text.utils import categorical_sample
from gym.error import DependencyNotInstalled
UP = 0
RIGHT = 1
DOWN = 2
LEFT = 3
class CliffWalkingEnv(Env):
"""
This is a simple implementation of the Gridworld Cliff
reinforcement learning task.
Adapted from Example 6.6 (page 106) from [Reinforcement Learning: An Introduction
by Sutton and Barto](http://incompleteideas.net/book/bookdraft2018jan1.pdf).
With inspiration from:
[https://github.com/dennybritz/reinforcement-learning/blob/master/lib/envs/cliff_walking.py]
(https://github.com/dennybritz/reinforcement-learning/blob/master/lib/envs/cliff_walking.py)
### Description
The board is a 4x12 matrix, with (using NumPy matrix indexing):
- [3, 0] as the start at bottom-left
- [3, 11] as the goal at bottom-right
- [3, 1..10] as the cliff at bottom-center
If the agent steps on the cliff, it returns to the start.
An episode terminates when the agent reaches the goal.
### Actions
There are 4 discrete deterministic actions:
- 0: move up
- 1: move right
- 2: move down
- 3: move left
### Observations
There are 3x12 + 1 possible states. In fact, the agent cannot be at the cliff, nor at the goal
(as this results in the end of the episode).
It remains all the positions of the first 3 rows plus the bottom-left cell.
The observation is simply the current position encoded as [flattened index](https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html).
### Reward
Each time step incurs -1 reward, and stepping into the cliff incurs -100 reward.
### Arguments
```
gym.make('CliffWalking-v0')
```
### Version History
- v0: Initial version release
"""
metadata = {
"render_modes": ["human", "rgb_array", "ansi"],
"render_fps": 4,
}
def __init__(self, render_mode: Optional[str] = None):
self.shape = (4, 12)
self.start_state_index = np.ravel_multi_index((3, 0), self.shape)
self.nS = np.prod(self.shape)
self.nA = 4
# Cliff Location
self._cliff = np.zeros(self.shape, dtype=bool)
self._cliff[3, 1:-1] = True
# Calculate transition probabilities and rewards
self.P = {}
for s in range(self.nS):
position = np.unravel_index(s, self.shape)
self.P[s] = {a: [] for a in range(self.nA)}
self.P[s][UP] = self._calculate_transition_prob(position, [-1, 0])
self.P[s][RIGHT] = self._calculate_transition_prob(position, [0, 1])
self.P[s][DOWN] = self._calculate_transition_prob(position, [1, 0])
self.P[s][LEFT] = self._calculate_transition_prob(position, [0, -1])
# Calculate initial state distribution
# We always start in state (3, 0)
self.initial_state_distrib = np.zeros(self.nS)
self.initial_state_distrib[self.start_state_index] = 1.0
self.observation_space = spaces.Discrete(self.nS)
self.action_space = spaces.Discrete(self.nA)
self.render_mode = render_mode
# pygame utils
self.cell_size = (60, 60)
self.window_size = (
self.shape[1] * self.cell_size[1],
self.shape[0] * self.cell_size[0],
)
self.window_surface = None
self.clock = None
self.elf_images = None
self.start_img = None
self.goal_img = None
self.cliff_img = None
self.mountain_bg_img = None
self.near_cliff_img = None
self.tree_img = None
def _limit_coordinates(self, coord: np.ndarray) -> np.ndarray:
"""Prevent the agent from falling out of the grid world."""
coord[0] = min(coord[0], self.shape[0] - 1)
coord[0] = max(coord[0], 0)
coord[1] = min(coord[1], self.shape[1] - 1)
coord[1] = max(coord[1], 0)
return coord
def _calculate_transition_prob(self, current, delta):
"""Determine the outcome for an action. Transition Prob is always 1.0.
Args:
current: Current position on the grid as (row, col)
delta: Change in position for transition
Returns:
Tuple of ``(1.0, new_state, reward, terminated)``
"""
new_position = np.array(current) + np.array(delta)
new_position = self._limit_coordinates(new_position).astype(int)
new_state = np.ravel_multi_index(tuple(new_position), self.shape)
if self._cliff[tuple(new_position)]:
return [(1.0, self.start_state_index, -100, False)]
terminal_state = (self.shape[0] - 1, self.shape[1] - 1)
is_terminated = tuple(new_position) == terminal_state
return [(1.0, new_state, -1, is_terminated)]
def step(self, a):
transitions = self.P[self.s][a]
i = categorical_sample([t[0] for t in transitions], self.np_random)
p, s, r, t = transitions[i]
self.s = s
self.lastaction = a
if self.render_mode == "human":
self.render()
return (int(s), r, t, False, {"prob": p})
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
super().reset(seed=seed)
self.s = categorical_sample(self.initial_state_distrib, self.np_random)
self.lastaction = None
if self.render_mode == "human":
self.render()
return int(self.s), {"prob": 1}
def render(self):
if self.render_mode is None:
logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
elif self.render_mode == "ansi":
return self._render_text()
else:
return self._render_gui(self.render_mode)
def _render_gui(self, mode):
try:
import pygame
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[toy_text]`"
)
if self.window_surface is None:
pygame.init()
if mode == "human":
pygame.display.init()
pygame.display.set_caption("CliffWalking")
self.window_surface = pygame.display.set_mode(self.window_size)
else: # rgb_array
self.window_surface = pygame.Surface(self.window_size)
if self.clock is None:
self.clock = pygame.time.Clock()
if self.elf_images is None:
hikers = [
path.join(path.dirname(__file__), "img/elf_up.png"),
path.join(path.dirname(__file__), "img/elf_right.png"),
path.join(path.dirname(__file__), "img/elf_down.png"),
path.join(path.dirname(__file__), "img/elf_left.png"),
]
self.elf_images = [
pygame.transform.scale(pygame.image.load(f_name), self.cell_size)
for f_name in hikers
]
if self.start_img is None:
file_name = path.join(path.dirname(__file__), "img/stool.png")
self.start_img = pygame.transform.scale(
pygame.image.load(file_name), self.cell_size
)
if self.goal_img is None:
file_name = path.join(path.dirname(__file__), "img/cookie.png")
self.goal_img = pygame.transform.scale(
pygame.image.load(file_name), self.cell_size
)
if self.mountain_bg_img is None:
bg_imgs = [
path.join(path.dirname(__file__), "img/mountain_bg1.png"),
path.join(path.dirname(__file__), "img/mountain_bg2.png"),
]
self.mountain_bg_img = [
pygame.transform.scale(pygame.image.load(f_name), self.cell_size)
for f_name in bg_imgs
]
if self.near_cliff_img is None:
near_cliff_imgs = [
path.join(path.dirname(__file__), "img/mountain_near-cliff1.png"),
path.join(path.dirname(__file__), "img/mountain_near-cliff2.png"),
]
self.near_cliff_img = [
pygame.transform.scale(pygame.image.load(f_name), self.cell_size)
for f_name in near_cliff_imgs
]
if self.cliff_img is None:
file_name = path.join(path.dirname(__file__), "img/mountain_cliff.png")
self.cliff_img = pygame.transform.scale(
pygame.image.load(file_name), self.cell_size
)
for s in range(self.nS):
row, col = np.unravel_index(s, self.shape)
pos = (col * self.cell_size[0], row * self.cell_size[1])
check_board_mask = row % 2 ^ col % 2
self.window_surface.blit(self.mountain_bg_img[check_board_mask], pos)
if self._cliff[row, col]:
self.window_surface.blit(self.cliff_img, pos)
if row < self.shape[0] - 1 and self._cliff[row + 1, col]:
self.window_surface.blit(self.near_cliff_img[check_board_mask], pos)
if s == self.start_state_index:
self.window_surface.blit(self.start_img, pos)
if s == self.nS - 1:
self.window_surface.blit(self.goal_img, pos)
if s == self.s:
elf_pos = (pos[0], pos[1] - 0.1 * self.cell_size[1])
last_action = self.lastaction if self.lastaction is not None else 2
self.window_surface.blit(self.elf_images[last_action], elf_pos)
if mode == "human":
pygame.event.pump()
pygame.display.update()
self.clock.tick(self.metadata["render_fps"])
else: # rgb_array
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.window_surface)), axes=(1, 0, 2)
)
def _render_text(self):
outfile = StringIO()
for s in range(self.nS):
position = np.unravel_index(s, self.shape)
if self.s == s:
output = " x "
# Print terminal state
elif position == (3, 11):
output = " T "
elif self._cliff[position]:
output = " C "
else:
output = " o "
if position[1] == 0:
output = output.lstrip()
if position[1] == self.shape[1] - 1:
output = output.rstrip()
output += "\n"
outfile.write(output)
outfile.write("\n")
with closing(outfile):
return outfile.getvalue()