Spaces:
Running
Running
""" | |
Text-based visual representations of graphs | |
""" | |
import sys | |
import warnings | |
from collections import defaultdict | |
import networkx as nx | |
from networkx.utils import open_file | |
__all__ = ["forest_str", "generate_network_text", "write_network_text"] | |
class BaseGlyphs: | |
def as_dict(cls): | |
return { | |
a: getattr(cls, a) | |
for a in dir(cls) | |
if not a.startswith("_") and a != "as_dict" | |
} | |
class AsciiBaseGlyphs(BaseGlyphs): | |
empty: str = "+" | |
newtree_last: str = "+-- " | |
newtree_mid: str = "+-- " | |
endof_forest: str = " " | |
within_forest: str = ": " | |
within_tree: str = "| " | |
class AsciiDirectedGlyphs(AsciiBaseGlyphs): | |
last: str = "L-> " | |
mid: str = "|-> " | |
backedge: str = "<-" | |
vertical_edge: str = "!" | |
class AsciiUndirectedGlyphs(AsciiBaseGlyphs): | |
last: str = "L-- " | |
mid: str = "|-- " | |
backedge: str = "-" | |
vertical_edge: str = "|" | |
class UtfBaseGlyphs(BaseGlyphs): | |
# Notes on available box and arrow characters | |
# https://en.wikipedia.org/wiki/Box-drawing_character | |
# https://stackoverflow.com/questions/2701192/triangle-arrow | |
empty: str = "β" | |
newtree_last: str = "βββ " | |
newtree_mid: str = "βββ " | |
endof_forest: str = " " | |
within_forest: str = "β " | |
within_tree: str = "β " | |
class UtfDirectedGlyphs(UtfBaseGlyphs): | |
last: str = "βββΌ " | |
mid: str = "βββΌ " | |
backedge: str = "βΎ" | |
vertical_edge: str = "β½" | |
class UtfUndirectedGlyphs(UtfBaseGlyphs): | |
last: str = "βββ " | |
mid: str = "βββ " | |
backedge: str = "β" | |
vertical_edge: str = "β" | |
def generate_network_text( | |
graph, | |
with_labels=True, | |
sources=None, | |
max_depth=None, | |
ascii_only=False, | |
vertical_chains=False, | |
): | |
"""Generate lines in the "network text" format | |
This works via a depth-first traversal of the graph and writing a line for | |
each unique node encountered. Non-tree edges are written to the right of | |
each node, and connection to a non-tree edge is indicated with an ellipsis. | |
This representation works best when the input graph is a forest, but any | |
graph can be represented. | |
This notation is original to networkx, although it is simple enough that it | |
may be known in existing literature. See #5602 for details. The procedure | |
is summarized as follows: | |
1. Given a set of source nodes (which can be specified, or automatically | |
discovered via finding the (strongly) connected components and choosing one | |
node with minimum degree from each), we traverse the graph in depth first | |
order. | |
2. Each reachable node will be printed exactly once on it's own line. | |
3. Edges are indicated in one of four ways: | |
a. a parent "L-style" connection on the upper left. This corresponds to | |
a traversal in the directed DFS tree. | |
b. a backref "<-style" connection shown directly on the right. For | |
directed graphs, these are drawn for any incoming edges to a node that | |
is not a parent edge. For undirected graphs, these are drawn for only | |
the non-parent edges that have already been represented (The edges that | |
have not been represented will be handled in the recursive case). | |
c. a child "L-style" connection on the lower right. Drawing of the | |
children are handled recursively. | |
d. if ``vertical_chains`` is true, and a parent node only has one child | |
a "vertical-style" edge is drawn between them. | |
4. The children of each node (wrt the directed DFS tree) are drawn | |
underneath and to the right of it. In the case that a child node has already | |
been drawn the connection is replaced with an ellipsis ("...") to indicate | |
that there is one or more connections represented elsewhere. | |
5. If a maximum depth is specified, an edge to nodes past this maximum | |
depth will be represented by an ellipsis. | |
6. If a a node has a truthy "collapse" value, then we do not traverse past | |
that node. | |
Parameters | |
---------- | |
graph : nx.DiGraph | nx.Graph | |
Graph to represent | |
with_labels : bool | str | |
If True will use the "label" attribute of a node to display if it | |
exists otherwise it will use the node value itself. If given as a | |
string, then that attribute name will be used instead of "label". | |
Defaults to True. | |
sources : List | |
Specifies which nodes to start traversal from. Note: nodes that are not | |
reachable from one of these sources may not be shown. If unspecified, | |
the minimal set of nodes needed to reach all others will be used. | |
max_depth : int | None | |
The maximum depth to traverse before stopping. Defaults to None. | |
ascii_only : Boolean | |
If True only ASCII characters are used to construct the visualization | |
vertical_chains : Boolean | |
If True, chains of nodes will be drawn vertically when possible. | |
Yields | |
------ | |
str : a line of generated text | |
Examples | |
-------- | |
>>> graph = nx.path_graph(10) | |
>>> graph.add_node('A') | |
>>> graph.add_node('B') | |
>>> graph.add_node('C') | |
>>> graph.add_node('D') | |
>>> graph.add_edge(9, 'A') | |
>>> graph.add_edge(9, 'B') | |
>>> graph.add_edge(9, 'C') | |
>>> graph.add_edge('C', 'D') | |
>>> graph.add_edge('C', 'E') | |
>>> graph.add_edge('C', 'F') | |
>>> nx.write_network_text(graph) | |
βββ 0 | |
βββ 1 | |
βββ 2 | |
βββ 3 | |
βββ 4 | |
βββ 5 | |
βββ 6 | |
βββ 7 | |
βββ 8 | |
βββ 9 | |
βββ A | |
βββ B | |
βββ C | |
βββ D | |
βββ E | |
βββ F | |
>>> nx.write_network_text(graph, vertical_chains=True) | |
βββ 0 | |
β | |
1 | |
β | |
2 | |
β | |
3 | |
β | |
4 | |
β | |
5 | |
β | |
6 | |
β | |
7 | |
β | |
8 | |
β | |
9 | |
βββ A | |
βββ B | |
βββ C | |
βββ D | |
βββ E | |
βββ F | |
""" | |
from typing import Any, NamedTuple | |
class StackFrame(NamedTuple): | |
parent: Any | |
node: Any | |
indents: list | |
this_islast: bool | |
this_vertical: bool | |
collapse_attr = "collapse" | |
is_directed = graph.is_directed() | |
if is_directed: | |
glyphs = AsciiDirectedGlyphs if ascii_only else UtfDirectedGlyphs | |
succ = graph.succ | |
pred = graph.pred | |
else: | |
glyphs = AsciiUndirectedGlyphs if ascii_only else UtfUndirectedGlyphs | |
succ = graph.adj | |
pred = graph.adj | |
if isinstance(with_labels, str): | |
label_attr = with_labels | |
elif with_labels: | |
label_attr = "label" | |
else: | |
label_attr = None | |
if max_depth == 0: | |
yield glyphs.empty + " ..." | |
elif len(graph.nodes) == 0: | |
yield glyphs.empty | |
else: | |
# If the nodes to traverse are unspecified, find the minimal set of | |
# nodes that will reach the entire graph | |
if sources is None: | |
sources = _find_sources(graph) | |
# Populate the stack with each: | |
# 1. parent node in the DFS tree (or None for root nodes), | |
# 2. the current node in the DFS tree | |
# 2. a list of indentations indicating depth | |
# 3. a flag indicating if the node is the final one to be written. | |
# Reverse the stack so sources are popped in the correct order. | |
last_idx = len(sources) - 1 | |
stack = [ | |
StackFrame(None, node, [], (idx == last_idx), False) | |
for idx, node in enumerate(sources) | |
][::-1] | |
num_skipped_children = defaultdict(lambda: 0) | |
seen_nodes = set() | |
while stack: | |
parent, node, indents, this_islast, this_vertical = stack.pop() | |
if node is not Ellipsis: | |
skip = node in seen_nodes | |
if skip: | |
# Mark that we skipped a parent's child | |
num_skipped_children[parent] += 1 | |
if this_islast: | |
# If we reached the last child of a parent, and we skipped | |
# any of that parents children, then we should emit an | |
# ellipsis at the end after this. | |
if num_skipped_children[parent] and parent is not None: | |
# Append the ellipsis to be emitted last | |
next_islast = True | |
try_frame = StackFrame( | |
node, Ellipsis, indents, next_islast, False | |
) | |
stack.append(try_frame) | |
# Redo this frame, but not as a last object | |
next_islast = False | |
try_frame = StackFrame( | |
parent, node, indents, next_islast, this_vertical | |
) | |
stack.append(try_frame) | |
continue | |
if skip: | |
continue | |
seen_nodes.add(node) | |
if not indents: | |
# Top level items (i.e. trees in the forest) get different | |
# glyphs to indicate they are not actually connected | |
if this_islast: | |
this_vertical = False | |
this_prefix = indents + [glyphs.newtree_last] | |
next_prefix = indents + [glyphs.endof_forest] | |
else: | |
this_prefix = indents + [glyphs.newtree_mid] | |
next_prefix = indents + [glyphs.within_forest] | |
else: | |
# Non-top-level items | |
if this_vertical: | |
this_prefix = indents | |
next_prefix = indents | |
else: | |
if this_islast: | |
this_prefix = indents + [glyphs.last] | |
next_prefix = indents + [glyphs.endof_forest] | |
else: | |
this_prefix = indents + [glyphs.mid] | |
next_prefix = indents + [glyphs.within_tree] | |
if node is Ellipsis: | |
label = " ..." | |
suffix = "" | |
children = [] | |
else: | |
if label_attr is not None: | |
label = str(graph.nodes[node].get(label_attr, node)) | |
else: | |
label = str(node) | |
# Determine if we want to show the children of this node. | |
if collapse_attr is not None: | |
collapse = graph.nodes[node].get(collapse_attr, False) | |
else: | |
collapse = False | |
# Determine: | |
# (1) children to traverse into after showing this node. | |
# (2) parents to immediately show to the right of this node. | |
if is_directed: | |
# In the directed case we must show every successor node | |
# note: it may be skipped later, but we don't have that | |
# information here. | |
children = list(succ[node]) | |
# In the directed case we must show every predecessor | |
# except for parent we directly traversed from. | |
handled_parents = {parent} | |
else: | |
# Showing only the unseen children results in a more | |
# concise representation for the undirected case. | |
children = [ | |
child for child in succ[node] if child not in seen_nodes | |
] | |
# In the undirected case, parents are also children, so we | |
# only need to immediately show the ones we can no longer | |
# traverse | |
handled_parents = {*children, parent} | |
if max_depth is not None and len(indents) == max_depth - 1: | |
# Use ellipsis to indicate we have reached maximum depth | |
if children: | |
children = [Ellipsis] | |
handled_parents = {parent} | |
if collapse: | |
# Collapsing a node is the same as reaching maximum depth | |
if children: | |
children = [Ellipsis] | |
handled_parents = {parent} | |
# The other parents are other predecessors of this node that | |
# are not handled elsewhere. | |
other_parents = [p for p in pred[node] if p not in handled_parents] | |
if other_parents: | |
if label_attr is not None: | |
other_parents_labels = ", ".join( | |
[ | |
str(graph.nodes[p].get(label_attr, p)) | |
for p in other_parents | |
] | |
) | |
else: | |
other_parents_labels = ", ".join( | |
[str(p) for p in other_parents] | |
) | |
suffix = " ".join(["", glyphs.backedge, other_parents_labels]) | |
else: | |
suffix = "" | |
# Emit the line for this node, this will be called for each node | |
# exactly once. | |
if this_vertical: | |
yield "".join(this_prefix + [glyphs.vertical_edge]) | |
yield "".join(this_prefix + [label, suffix]) | |
if vertical_chains: | |
if is_directed: | |
num_children = len(set(children)) | |
else: | |
num_children = len(set(children) - {parent}) | |
# The next node can be drawn vertically if it is the only | |
# remaining child of this node. | |
next_is_vertical = num_children == 1 | |
else: | |
next_is_vertical = False | |
# Push children on the stack in reverse order so they are popped in | |
# the original order. | |
for idx, child in enumerate(children[::-1]): | |
next_islast = idx == 0 | |
try_frame = StackFrame( | |
node, child, next_prefix, next_islast, next_is_vertical | |
) | |
stack.append(try_frame) | |
def write_network_text( | |
graph, | |
path=None, | |
with_labels=True, | |
sources=None, | |
max_depth=None, | |
ascii_only=False, | |
end="\n", | |
vertical_chains=False, | |
): | |
"""Creates a nice text representation of a graph | |
This works via a depth-first traversal of the graph and writing a line for | |
each unique node encountered. Non-tree edges are written to the right of | |
each node, and connection to a non-tree edge is indicated with an ellipsis. | |
This representation works best when the input graph is a forest, but any | |
graph can be represented. | |
Parameters | |
---------- | |
graph : nx.DiGraph | nx.Graph | |
Graph to represent | |
path : string or file or callable or None | |
Filename or file handle for data output. | |
if a function, then it will be called for each generated line. | |
if None, this will default to "sys.stdout.write" | |
with_labels : bool | str | |
If True will use the "label" attribute of a node to display if it | |
exists otherwise it will use the node value itself. If given as a | |
string, then that attribute name will be used instead of "label". | |
Defaults to True. | |
sources : List | |
Specifies which nodes to start traversal from. Note: nodes that are not | |
reachable from one of these sources may not be shown. If unspecified, | |
the minimal set of nodes needed to reach all others will be used. | |
max_depth : int | None | |
The maximum depth to traverse before stopping. Defaults to None. | |
ascii_only : Boolean | |
If True only ASCII characters are used to construct the visualization | |
end : string | |
The line ending character | |
vertical_chains : Boolean | |
If True, chains of nodes will be drawn vertically when possible. | |
Examples | |
-------- | |
>>> graph = nx.balanced_tree(r=2, h=2, create_using=nx.DiGraph) | |
>>> nx.write_network_text(graph) | |
βββ 0 | |
βββΌ 1 | |
β βββΌ 3 | |
β βββΌ 4 | |
βββΌ 2 | |
βββΌ 5 | |
βββΌ 6 | |
>>> # A near tree with one non-tree edge | |
>>> graph.add_edge(5, 1) | |
>>> nx.write_network_text(graph) | |
βββ 0 | |
βββΌ 1 βΎ 5 | |
β βββΌ 3 | |
β βββΌ 4 | |
βββΌ 2 | |
βββΌ 5 | |
β βββΌ ... | |
βββΌ 6 | |
>>> graph = nx.cycle_graph(5) | |
>>> nx.write_network_text(graph) | |
βββ 0 | |
βββ 1 | |
β βββ 2 | |
β βββ 3 | |
β βββ 4 β 0 | |
βββ ... | |
>>> graph = nx.cycle_graph(5, nx.DiGraph) | |
>>> nx.write_network_text(graph, vertical_chains=True) | |
βββ 0 βΎ 4 | |
β½ | |
1 | |
β½ | |
2 | |
β½ | |
3 | |
β½ | |
4 | |
βββΌ ... | |
>>> nx.write_network_text(graph, vertical_chains=True, ascii_only=True) | |
+-- 0 <- 4 | |
! | |
1 | |
! | |
2 | |
! | |
3 | |
! | |
4 | |
L-> ... | |
>>> graph = nx.generators.barbell_graph(4, 2) | |
>>> nx.write_network_text(graph, vertical_chains=False) | |
βββ 4 | |
βββ 5 | |
β βββ 6 | |
β βββ 7 | |
β β βββ 8 β 6 | |
β β β βββ 9 β 6, 7 | |
β β βββ ... | |
β βββ ... | |
βββ 3 | |
βββ 0 | |
β βββ 1 β 3 | |
β β βββ 2 β 0, 3 | |
β βββ ... | |
βββ ... | |
>>> nx.write_network_text(graph, vertical_chains=True) | |
βββ 4 | |
βββ 5 | |
β β | |
β 6 | |
β βββ 7 | |
β β βββ 8 β 6 | |
β β β β | |
β β β 9 β 6, 7 | |
β β βββ ... | |
β βββ ... | |
βββ 3 | |
βββ 0 | |
β βββ 1 β 3 | |
β β β | |
β β 2 β 0, 3 | |
β βββ ... | |
βββ ... | |
>>> graph = nx.complete_graph(5, create_using=nx.Graph) | |
>>> nx.write_network_text(graph) | |
βββ 0 | |
βββ 1 | |
β βββ 2 β 0 | |
β β βββ 3 β 0, 1 | |
β β β βββ 4 β 0, 1, 2 | |
β β βββ ... | |
β βββ ... | |
βββ ... | |
>>> graph = nx.complete_graph(3, create_using=nx.DiGraph) | |
>>> nx.write_network_text(graph) | |
βββ 0 βΎ 1, 2 | |
βββΌ 1 βΎ 2 | |
β βββΌ 2 βΎ 0 | |
β β βββΌ ... | |
β βββΌ ... | |
βββΌ ... | |
""" | |
if path is None: | |
# The path is unspecified, write to stdout | |
_write = sys.stdout.write | |
elif hasattr(path, "write"): | |
# The path is already an open file | |
_write = path.write | |
elif callable(path): | |
# The path is a custom callable | |
_write = path | |
else: | |
raise TypeError(type(path)) | |
for line in generate_network_text( | |
graph, | |
with_labels=with_labels, | |
sources=sources, | |
max_depth=max_depth, | |
ascii_only=ascii_only, | |
vertical_chains=vertical_chains, | |
): | |
_write(line + end) | |
def _find_sources(graph): | |
""" | |
Determine a minimal set of nodes such that the entire graph is reachable | |
""" | |
# For each connected part of the graph, choose at least | |
# one node as a starting point, preferably without a parent | |
if graph.is_directed(): | |
# Choose one node from each SCC with minimum in_degree | |
sccs = list(nx.strongly_connected_components(graph)) | |
# condensing the SCCs forms a dag, the nodes in this graph with | |
# 0 in-degree correspond to the SCCs from which the minimum set | |
# of nodes from which all other nodes can be reached. | |
scc_graph = nx.condensation(graph, sccs) | |
supernode_to_nodes = {sn: [] for sn in scc_graph.nodes()} | |
# Note: the order of mapping differs between pypy and cpython | |
# so we have to loop over graph nodes for consistency | |
mapping = scc_graph.graph["mapping"] | |
for n in graph.nodes: | |
sn = mapping[n] | |
supernode_to_nodes[sn].append(n) | |
sources = [] | |
for sn in scc_graph.nodes(): | |
if scc_graph.in_degree[sn] == 0: | |
scc = supernode_to_nodes[sn] | |
node = min(scc, key=lambda n: graph.in_degree[n]) | |
sources.append(node) | |
else: | |
# For undirected graph, the entire graph will be reachable as | |
# long as we consider one node from every connected component | |
sources = [ | |
min(cc, key=lambda n: graph.degree[n]) | |
for cc in nx.connected_components(graph) | |
] | |
sources = sorted(sources, key=lambda n: graph.degree[n]) | |
return sources | |
def forest_str(graph, with_labels=True, sources=None, write=None, ascii_only=False): | |
"""Creates a nice utf8 representation of a forest | |
This function has been superseded by | |
:func:`nx.readwrite.text.generate_network_text`, which should be used | |
instead. | |
Parameters | |
---------- | |
graph : nx.DiGraph | nx.Graph | |
Graph to represent (must be a tree, forest, or the empty graph) | |
with_labels : bool | |
If True will use the "label" attribute of a node to display if it | |
exists otherwise it will use the node value itself. Defaults to True. | |
sources : List | |
Mainly relevant for undirected forests, specifies which nodes to list | |
first. If unspecified the root nodes of each tree will be used for | |
directed forests; for undirected forests this defaults to the nodes | |
with the smallest degree. | |
write : callable | |
Function to use to write to, if None new lines are appended to | |
a list and returned. If set to the `print` function, lines will | |
be written to stdout as they are generated. If specified, | |
this function will return None. Defaults to None. | |
ascii_only : Boolean | |
If True only ASCII characters are used to construct the visualization | |
Returns | |
------- | |
str | None : | |
utf8 representation of the tree / forest | |
Examples | |
-------- | |
>>> graph = nx.balanced_tree(r=2, h=3, create_using=nx.DiGraph) | |
>>> print(nx.forest_str(graph)) | |
βββ 0 | |
βββΌ 1 | |
β βββΌ 3 | |
β β βββΌ 7 | |
β β βββΌ 8 | |
β βββΌ 4 | |
β βββΌ 9 | |
β βββΌ 10 | |
βββΌ 2 | |
βββΌ 5 | |
β βββΌ 11 | |
β βββΌ 12 | |
βββΌ 6 | |
βββΌ 13 | |
βββΌ 14 | |
>>> graph = nx.balanced_tree(r=1, h=2, create_using=nx.Graph) | |
>>> print(nx.forest_str(graph)) | |
βββ 0 | |
βββ 1 | |
βββ 2 | |
>>> print(nx.forest_str(graph, ascii_only=True)) | |
+-- 0 | |
L-- 1 | |
L-- 2 | |
""" | |
msg = ( | |
"\nforest_str is deprecated as of version 3.1 and will be removed " | |
"in version 3.3. Use generate_network_text or write_network_text " | |
"instead.\n" | |
) | |
warnings.warn(msg, DeprecationWarning) | |
if len(graph.nodes) > 0: | |
if not nx.is_forest(graph): | |
raise nx.NetworkXNotImplemented("input must be a forest or the empty graph") | |
printbuf = [] | |
if write is None: | |
_write = printbuf.append | |
else: | |
_write = write | |
write_network_text( | |
graph, | |
_write, | |
with_labels=with_labels, | |
sources=sources, | |
ascii_only=ascii_only, | |
end="", | |
) | |
if write is None: | |
# Only return a string if the custom write function was not specified | |
return "\n".join(printbuf) | |
def _parse_network_text(lines): | |
"""Reconstructs a graph from a network text representation. | |
This is mainly used for testing. Network text is for display, not | |
serialization, as such this cannot parse all network text representations | |
because node labels can be ambiguous with the glyphs and indentation used | |
to represent edge structure. Additionally, there is no way to determine if | |
disconnected graphs were originally directed or undirected. | |
Parameters | |
---------- | |
lines : list or iterator of strings | |
Input data in network text format | |
Returns | |
------- | |
G: NetworkX graph | |
The graph corresponding to the lines in network text format. | |
""" | |
from itertools import chain | |
from typing import Any, NamedTuple, Union | |
class ParseStackFrame(NamedTuple): | |
node: Any | |
indent: int | |
has_vertical_child: Union[int, None] | |
initial_line_iter = iter(lines) | |
is_ascii = None | |
is_directed = None | |
############## | |
# Initial Pass | |
############## | |
# Do an initial pass over the lines to determine what type of graph it is. | |
# Remember what these lines were, so we can reiterate over them in the | |
# parsing pass. | |
initial_lines = [] | |
try: | |
first_line = next(initial_line_iter) | |
except StopIteration: | |
... | |
else: | |
initial_lines.append(first_line) | |
# The first character indicates if it is an ASCII or UTF graph | |
first_char = first_line[0] | |
if first_char in { | |
UtfBaseGlyphs.empty, | |
UtfBaseGlyphs.newtree_mid[0], | |
UtfBaseGlyphs.newtree_last[0], | |
}: | |
is_ascii = False | |
elif first_char in { | |
AsciiBaseGlyphs.empty, | |
AsciiBaseGlyphs.newtree_mid[0], | |
AsciiBaseGlyphs.newtree_last[0], | |
}: | |
is_ascii = True | |
else: | |
raise AssertionError(f"Unexpected first character: {first_char}") | |
if is_ascii: | |
directed_glyphs = AsciiDirectedGlyphs.as_dict() | |
undirected_glyphs = AsciiUndirectedGlyphs.as_dict() | |
else: | |
directed_glyphs = UtfDirectedGlyphs.as_dict() | |
undirected_glyphs = UtfUndirectedGlyphs.as_dict() | |
# For both directed / undirected glyphs, determine which glyphs never | |
# appear as substrings in the other undirected / directed glyphs. Glyphs | |
# with this property unambiguously indicates if a graph is directed / | |
# undirected. | |
directed_items = set(directed_glyphs.values()) | |
undirected_items = set(undirected_glyphs.values()) | |
unambiguous_directed_items = [] | |
for item in directed_items: | |
other_items = undirected_items | |
other_supersets = [other for other in other_items if item in other] | |
if not other_supersets: | |
unambiguous_directed_items.append(item) | |
unambiguous_undirected_items = [] | |
for item in undirected_items: | |
other_items = directed_items | |
other_supersets = [other for other in other_items if item in other] | |
if not other_supersets: | |
unambiguous_undirected_items.append(item) | |
for line in initial_line_iter: | |
initial_lines.append(line) | |
if any(item in line for item in unambiguous_undirected_items): | |
is_directed = False | |
break | |
elif any(item in line for item in unambiguous_directed_items): | |
is_directed = True | |
break | |
if is_directed is None: | |
# Not enough information to determine, choose undirected by default | |
is_directed = False | |
glyphs = directed_glyphs if is_directed else undirected_glyphs | |
# the backedge symbol by itself can be ambiguous, but with spaces around it | |
# becomes unambiguous. | |
backedge_symbol = " " + glyphs["backedge"] + " " | |
# Reconstruct an iterator over all of the lines. | |
parsing_line_iter = chain(initial_lines, initial_line_iter) | |
############## | |
# Parsing Pass | |
############## | |
edges = [] | |
nodes = [] | |
is_empty = None | |
noparent = object() # sentinel value | |
# keep a stack of previous nodes that could be parents of subsequent nodes | |
stack = [ParseStackFrame(noparent, -1, None)] | |
for line in parsing_line_iter: | |
if line == glyphs["empty"]: | |
# If the line is the empty glyph, we are done. | |
# There shouldn't be anything else after this. | |
is_empty = True | |
continue | |
if backedge_symbol in line: | |
# This line has one or more backedges, separate those out | |
node_part, backedge_part = line.split(backedge_symbol) | |
backedge_nodes = [u.strip() for u in backedge_part.split(", ")] | |
# Now the node can be parsed | |
node_part = node_part.rstrip() | |
prefix, node = node_part.rsplit(" ", 1) | |
node = node.strip() | |
# Add the backedges to the edge list | |
edges.extend([(u, node) for u in backedge_nodes]) | |
else: | |
# No backedge, the tail of this line is the node | |
prefix, node = line.rsplit(" ", 1) | |
node = node.strip() | |
prev = stack.pop() | |
if node in glyphs["vertical_edge"]: | |
# Previous node is still the previous node, but we know it will | |
# have exactly one child, which will need to have its nesting level | |
# adjusted. | |
modified_prev = ParseStackFrame( | |
prev.node, | |
prev.indent, | |
True, | |
) | |
stack.append(modified_prev) | |
continue | |
# The length of the string before the node characters give us a hint | |
# about our nesting level. The only case where this doesn't work is | |
# when there are vertical chains, which is handled explicitly. | |
indent = len(prefix) | |
curr = ParseStackFrame(node, indent, None) | |
if prev.has_vertical_child: | |
# In this case we know prev must be the parent of our current line, | |
# so we don't have to search the stack. (which is good because the | |
# indentation check wouldn't work in this case). | |
... | |
else: | |
# If the previous node nesting-level is greater than the current | |
# nodes nesting-level than the previous node was the end of a path, | |
# and is not our parent. We can safely pop nodes off the stack | |
# until we find one with a comparable nesting-level, which is our | |
# parent. | |
while curr.indent <= prev.indent: | |
prev = stack.pop() | |
if node == "...": | |
# The current previous node is no longer a valid parent, | |
# keep it popped from the stack. | |
stack.append(prev) | |
else: | |
# The previous and current nodes may still be parents, so add them | |
# back onto the stack. | |
stack.append(prev) | |
stack.append(curr) | |
# Add the node and the edge to its parent to the node / edge lists. | |
nodes.append(curr.node) | |
if prev.node is not noparent: | |
edges.append((prev.node, curr.node)) | |
if is_empty: | |
# Sanity check | |
assert len(nodes) == 0 | |
# Reconstruct the graph | |
cls = nx.DiGraph if is_directed else nx.Graph | |
new = cls() | |
new.add_nodes_from(nodes) | |
new.add_edges_from(edges) | |
return new | |