Kano001's picture
Upload 5252 files
c61ccee verified
raw
history blame
36 kB
# mypy: ignore-errors
import collections
import functools
import inspect
import itertools
import types
from typing import Dict, List, Optional, TYPE_CHECKING, Union
import torch
from .. import variables
from ..bytecode_transformation import create_call_function, create_rot_n
from ..exc import unimplemented, Unsupported
from ..guards import GuardBuilder, install_guard
from ..source import AttrSource, ConstantSource, DefaultsSource, GetItemSource
from ..utils import check_constant_args, get_first_attr, identity, istype, make_cell
from .base import MutableLocal, typestr, VariableTracker
from .constant import ConstantVariable
from .distributed import ProcessGroupVariable
if TYPE_CHECKING:
from torch._guards import Source
def wrap_bound_arg(tx, val, source=None):
# Source propagation is best effort since not every object we encounter has a source to begin with.
if isinstance(val, VariableTracker):
return val
elif not source:
from torch._dynamo.variables.builder import SourcelessBuilder
return SourcelessBuilder()(tx, val)
else:
# Create a lazy variable to avoid guarding on __defaults__ unless really
# needed.
return variables.LazyVariableTracker.create(val, source)
def wrap_args_kwargs(tx, result):
for k, v in list(result.items()):
if isinstance(v, (tuple, dict)):
# args/kwargs
result[k] = wrap_bound_arg(tx, v)
def init_cellvars(parent, result, code):
closure_cells = dict()
side_effects = parent.output.side_effects
# for name in itertools.chain(code.co_cellvars, code.co_freevars):
for name in code.co_cellvars:
closure_cells[name] = side_effects.track_cell_new()
if name in result:
side_effects.store_cell(closure_cells[name], result.pop(name))
return closure_cells
def _create_nested_fn(
code, f_globals, name, defaults, closure, kwdefaults, annotations
):
from types import FunctionType
func = FunctionType(code, f_globals, name, defaults, closure)
func.__kwdefaults__ = kwdefaults
if isinstance(annotations, tuple):
from itertools import pairwise
annotations = dict(pairwise(annotations))
# TypeError: __annotations__ must be set to a dict object
assert annotations is None or isinstance(annotations, dict)
func.__annotations__ = annotations
return func
class BaseUserFunctionVariable(VariableTracker):
def get_filename(self):
return self.get_code().co_filename
def get_name(self):
return self.get_code().co_name
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
return tx.inline_user_function_return(
self, list(self.self_args()) + list(args), kwargs
)
def call_hasattr(self, tx, name: str) -> VariableTracker:
result = False
try:
result = hasattr(self.get_function(), name)
except NotImplementedError:
if name == "__name__" and isinstance(self, NestedUserFunctionVariable):
result = True
return variables.ConstantVariable.create(result)
def inspect_parameter_names(self):
return list(inspect.signature(self.get_function()).parameters)
def closure_vars(self, tx):
return {}
class UserFunctionVariable(BaseUserFunctionVariable):
"""Some unsupported user-defined global function"""
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.CLOSURE_MATCH))
return cls(
value,
source=source,
)
def __init__(self, fn, is_constant=False, **kwargs):
super().__init__(**kwargs)
if getattr(fn, "_dynamo_marked_constant", False):
# This method should be treated as a constant for the purposes of compilation
self.is_constant = True
else:
self.is_constant = False
assert isinstance(
fn, (types.FunctionType, torch.jit.ScriptFunction)
), f"expected FunctionType found {typestr(fn)} {fn}"
# unpack @torch._dynamo.optimize()(fn) wrapped function
fn = inspect.getattr_static(fn, "_torchdynamo_inline", fn)
# unpack torch.jit.script_if_tracing
if inspect.getattr_static(fn, "__script_if_tracing_wrapper", False):
fn = inspect.getattr_static(fn, "__original_fn", fn)
self.fn: types.FunctionType = fn
def as_python_constant(self):
if istype(self, UserFunctionVariable):
return self.fn
# subclasses (such as methods) usually aren't a constant
return super().as_python_constant()
def self_args(self):
return []
def get_function(self):
return self.fn
def get_code(self):
return self.fn.__code__
def python_type(self):
return types.FunctionType
def has_self(self):
return getattr(self.fn, "__self__", None) is not None
def get_globals(self):
return self.fn.__globals__
def bind_args(self, parent, args, kwargs):
assert not self.is_constant
tx = parent.output.root_tx
wrap = functools.partial(wrap_bound_arg, tx=tx)
fn: types.FunctionType = self.fn
defaults = fn.__defaults__ or []
defaults_sources = [
None if self.source is None else DefaultsSource(self.source, idx)
for idx, _ in enumerate(defaults)
]
fake_func = types.FunctionType(
fn.__code__,
fn.__globals__,
fn.__name__,
tuple(
[
wrap(val=arg, source=source)
for arg, source in zip(defaults, defaults_sources)
]
),
fn.__closure__,
)
if fn.__kwdefaults__:
kwdefaults_sources = {
k: None
if self.source is None
else DefaultsSource(self.source, k, is_kw=True)
for k in fn.__kwdefaults__
}
fake_func.__kwdefaults__ = {
k: wrap(val=v, source=kwdefaults_sources[k])
for k, v in fn.__kwdefaults__.items()
}
bound = inspect.signature(fake_func).bind(*args, **kwargs)
bound.apply_defaults()
result = dict(bound.arguments.items())
wrap_args_kwargs(tx, result)
closure_cells = init_cellvars(parent, result, fn.__code__)
closure = self.fn.__closure__ or ()
assert len(closure) == len(self.fn.__code__.co_freevars)
for idx, name, cell in zip(
itertools.count(), self.fn.__code__.co_freevars, closure
):
if name == "__class__":
source = AttrSource(self.source, "__class__") if self.source else None
result[name] = variables.UserDefinedClassVariable(
cell.cell_contents,
source=source,
)
else:
var = tx.match_nested_cell(name, cell)
if var is not None:
# optimization for cleaner codegen
result[name] = var
elif self.source:
from .builder import VariableBuilder
side_effects = parent.output.side_effects
if cell in side_effects:
out = side_effects[cell]
else:
closure_cell = GetItemSource(
AttrSource(self.source, "__closure__"), idx
)
closure_cell_contents = AttrSource(
closure_cell, "cell_contents"
)
try:
contents_var = VariableBuilder(
parent, closure_cell_contents
)(cell.cell_contents)
except ValueError:
# Cell has not yet been assigned
contents_var = variables.DeletedVariable()
if (
closure_cell_contents.name()
not in tx.mutated_closure_cell_contents
):
# Optimistically don't allocate the cell, to
# reduce the number of side effects. This is
# important for cond, as without it, any accesses
# to closures create side effects and cond doesn't
# support side effects. If we're wrong and this
# closure cell gets written to, we will restart
# the analysis with this cell's name in the
# mutated list here
result[name] = contents_var
continue
# cells are written to with "cell_contents",
# so the source should just be the closure_cell, not its contents
out = side_effects.track_cell_existing(closure_cell, cell)
side_effects.store_cell(
out,
contents_var,
)
result[name] = out
else:
from .builder import SourcelessBuilder
result[name] = SourcelessBuilder()(tx, cell.cell_contents)
return result, closure_cells
def export_freevars(self, parent, child):
pass
def call_hasattr(self, tx, name: str) -> VariableTracker:
result = hasattr(self.fn, name)
return variables.ConstantVariable.create(result)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
if self.is_constant:
return invoke_and_store_as_constant(
tx, self.fn, self.get_name(), args, kwargs
)
return super().call_function(tx, args, kwargs)
class UserMethodVariable(UserFunctionVariable):
"""Some unsupported user-defined method"""
def __init__(self, fn, obj, **kwargs):
super().__init__(fn=fn, **kwargs)
self.obj = obj
def __str__(self):
return f"{self.__class__.__name__}({self.fn}, {self.obj})"
def self_args(self):
return [self.obj]
def python_type(self):
return types.MethodType
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
# For nn.Module methods, redirecting to NNModuleVariable.call_method for optimized solution
# rather than simple inlining. E.g, putting `call_method` op in FX graph for `forward` method
# since we ensure `forward` of allowed modules can be traced by AOT safely.
# Note this is not only for allowed modules, as user customized modules can extend from
# allowed modules but using parent's `forward` method, which is also covered by this branch.
# If we are tracing the higher order op, we want Dynamo to step inside
# the module call so that Dynamo can see the underlying parameters and
# buffers and raise them as inputs to the graph. The is_root_tracer
# check bypasses the if condition for non-root tracers and directly
# calls the super().call_function at the end, which is basically
# equivalent of inlining the method.
if tx.output.is_root_tracer() and isinstance(
self.obj, variables.NNModuleVariable
):
module_attr = getattr(self.fn, "__module__", "")
if (
module_attr is not None
and module_attr.startswith("torch.nn.")
or self.is_constant
):
return self.obj.call_method(
tx, self.fn.__name__, args, kwargs, constant=self.is_constant
)
return super().call_function(tx, args, kwargs)
def inspect_parameter_names(self):
return super().inspect_parameter_names()[1:]
class WrappedUserMethodVariable(UserMethodVariable):
def __init__(self, wrapped, context, **kwargs):
kwargs.pop("fn", None)
kwargs.pop("obj", None)
super().__init__(wrapped.fn, wrapped.obj, **kwargs)
self.wrapped = wrapped
self.context = context
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
self.context.enter(tx)
result = super().call_function(tx, args, kwargs)
self.context.exit(tx)
return result
class WrappedUserFunctionVariable(UserFunctionVariable):
def __init__(self, wrapped, context, **kwargs):
kwargs.pop("fn", None)
kwargs.pop("obj", None)
super().__init__(wrapped.fn, **kwargs)
self.wrapped = wrapped
self.context = context
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
self.context.enter(tx)
result = super().call_function(tx, args, kwargs)
self.context.exit(tx)
return result
def invoke_and_store_as_constant(tx, fn, name, args, kwargs):
def convert(x):
if isinstance(x, variables.TensorVariable):
return x.get_real_value()
return x.as_python_constant()
args = [convert(x) for x in args]
kwargs = {k: convert(v) for k, v in kwargs.items()}
res = fn(*args, **kwargs)
return tx.output.register_attr_or_module(
res,
name,
source=ConstantSource(name),
)
class NestedUserFunctionVariable(BaseUserFunctionVariable):
_nonvar_fields = {
"closure_scope",
"f_globals",
*BaseUserFunctionVariable._nonvar_fields,
}
def __init__(
self,
fn_name,
code,
f_globals,
defaults,
kwdefaults,
annotations,
closure,
closure_scope,
wrapped_reconstructible=None,
**kwargs,
):
super().__init__(**kwargs)
assert isinstance(fn_name.as_python_constant(), str)
assert isinstance(code.as_python_constant(), types.CodeType)
assert isinstance(f_globals, dict)
self.fn_name = fn_name
self.code = code
self.f_globals = f_globals
self.defaults = defaults
self.kwdefaults = kwdefaults
self.annotations = annotations
self.closure = closure
if closure is None:
closure_scope = None
self.closure_scope = closure_scope
# Either a source or a VT with .can_reconstruct() == True
self.wrapped_reconstructible: Optional[
Union[Source, VariableTracker]
] = wrapped_reconstructible
def self_args(self):
return []
def get_code(self):
return self.code.as_python_constant()
def get_function(self):
if self.closure:
raise NotImplementedError()
func = types.FunctionType(
self.code.as_python_constant(),
self.f_globals,
self.fn_name.as_python_constant(),
)
if self.defaults:
func.__defaults__ = self.defaults.as_python_constant()
if self.kwdefaults:
func.__kwdefaults__ = self.kwdefaults.as_python_constant()
if self.annotations:
annotations = self.annotations.as_python_constant()
if isinstance(annotations, tuple):
from itertools import pairwise
annotations = dict(pairwise(annotations))
# TypeError: __annotations__ must be set to a dict object
assert isinstance(annotations, dict)
func.__annotations__ = annotations
return func
def has_closure(self):
return self.closure is not None
def has_self(self):
return False
def get_globals(self):
return self.f_globals
def bind_args(self, parent, args, kwargs):
from .misc import InlinedClosureVariable
code = self.get_code()
func = types.FunctionType(
code,
self.f_globals,
self.fn_name.as_python_constant(),
tuple(self.defaults.items) if self.defaults else None,
tuple(make_cell(None) for _ in range(len(self.get_code().co_freevars))),
)
if self.kwdefaults:
func.__kwdefaults__ = self.kwdefaults.keys_as_python_constant()
bound = inspect.signature(func).bind(*args, **kwargs)
bound.apply_defaults()
result = dict(bound.arguments.items())
wrap_args_kwargs(parent.output.root_tx, result)
closure_cells = init_cellvars(parent, result, code)
for idx, name in enumerate(code.co_freevars):
cell = self.closure.items[idx]
assert getattr(cell, name, name) == name
assert name not in result
if isinstance(cell, InlinedClosureVariable):
# InlinedClosureVariable's are created from LOAD_CLOSURE's from
# InliningInstructionTranslators when the variable name is not found in closure_cells.
# They should remain outside of closure_cells, so that our callee (the
# InliningInstructionTranslator that traces `func`) handles
# the cell correctly - that is, the cell's contents are treated as if they
# are local variables, like in UserFunctionVariable's bind_args for freevars.
cand = parent
while cand and name not in cand.symbolic_locals:
cand = cand.parent
if cand is None:
raise RuntimeError(
f"Couldn't find {name} in the symbolic_locals of the inline interpreter stack"
)
result[name] = cand.symbolic_locals[name]
else:
closure_cells[name] = self.closure.items[idx]
return result, closure_cells
def export_freevars(self, parent, child):
code = self.get_code()
for var in code.co_freevars:
if var in child.symbolic_locals:
parent.symbolic_locals[var] = child.symbolic_locals[var]
def reconstruct(self, codegen):
codegen.load_import_from(__name__, "_create_nested_fn")
codegen(self.code)
codegen.extend_output([codegen._create_load_const(self.f_globals)])
codegen(ConstantVariable.create(self.code.value.co_name))
if self.defaults:
codegen(self.defaults)
else:
codegen.extend_output([codegen.create_load_const(None)])
if self.closure:
codegen(self.closure)
else:
codegen.extend_output([codegen.create_load_const(None)])
if self.kwdefaults:
codegen(self.kwdefaults)
else:
codegen.extend_output([codegen.create_load_const(None)])
if self.annotations:
try:
annotations = self.annotations.as_python_constant()
codegen.extend_output([codegen._create_load_const(annotations)])
except NotImplementedError:
codegen(self.annotations)
else:
codegen.extend_output([codegen.create_load_const(None)])
codegen.extend_output(create_call_function(7, push_null=True))
if self.wrapped_reconstructible:
codegen.load_import_from("functools", "wraps")
codegen(self.wrapped_reconstructible)
codegen.extend_output(create_call_function(1, True))
codegen.extend_output(create_rot_n(2))
codegen.extend_output(create_call_function(1, True))
class SkipFunctionVariable(VariableTracker):
def __init__(self, value, reason=None, **kwargs):
super().__init__(**kwargs)
self.value = value
self.reason = reason
def python_type(self):
return type(self.value)
def as_python_constant(self):
return self.value
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
return cls(
value,
source=source,
)
@staticmethod
@functools.lru_cache(None)
def fold_through_function_to_wrapper():
return {
collections.namedtuple: variables.UserDefinedClassVariable,
}
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
if inspect.getattr_static(self.value, "_torchdynamo_disable", False):
unimplemented(f"call torch._dynamo.disable() wrapped function {self.value}")
# Fold through the functions(e.g, collections.namedtuple)
# that inputs & outputs are all python constants
elif (
self.value in self.fold_through_function_to_wrapper().keys()
and check_constant_args(args, kwargs)
):
value = self.value(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
)
return self.fold_through_function_to_wrapper().get(self.value)(
value, mutable_local=MutableLocal()
)
elif (
self.value is functools.wraps
and not kwargs
and len(args) == 1
and (
args[0].source is not None or args[0].can_reconstruct(tx.output.root_tx)
)
):
def wraps(fn):
if isinstance(fn, variables.NestedUserFunctionVariable):
if args[0].source:
reconstructible = args[0].source
else:
reconstructible = args[0]
return fn.clone(wrapped_reconstructible=reconstructible)
unimplemented(f"functools.wraps({fn})")
return variables.LambdaVariable(wraps)
else:
try:
path = inspect.getfile(self.value)
except TypeError:
path = f"Builtin {self.value.__name__}"
msg = f"'skip function {self.value.__qualname__} in file {path}'"
msg += f"', {self.reason}'" if self.reason else ""
unimplemented(msg)
def _traceable_collective_remaps():
# We can't rely on importing from distributed, since it's not always built
if torch.distributed.is_available():
from torch.distributed._functional_collectives import (
traceable_collective_remaps,
)
return traceable_collective_remaps
return {}
def _traceable_collectives_source(tx, fn):
assert torch.distributed.is_available(), "Illegal invocation."
assert fn in _traceable_collective_remaps().values()
inner_name = fn.__name__
path_source = tx.import_source("torch.distributed._functional_collectives")
return AttrSource(path_source, inner_name)
class CollectiveFunctionRewriteVariable(UserFunctionVariable):
"""
Some of the torch.distributed.* collective APIs are possible to rewrite to 'traceable' collectives.
This class provides both a way to check if a function is remappable, and perform the remapping.
In the case that a function is 'remappable' but only for some combinations of call-time arguments,
we check the args at `call_function` time and fall back to graph-breaking if needed. This is no worse
than status-quo as we currently graph-break on all distributed.* collectives.
"""
def __init__(self, fn, *, replacement_var, **kwargs):
super().__init__(fn, **kwargs)
assert isinstance(replacement_var, UserFunctionVariable)
self.replacement_var = replacement_var
@staticmethod
def create(tx, old_fn, source, **options):
new_fn, new_source = CollectiveFunctionRewriteVariable.rewrite(tx, old_fn)
return CollectiveFunctionRewriteVariable(
old_fn,
replacement_var=UserFunctionVariable(new_fn, source=new_source, **options),
source=source,
**options,
)
@staticmethod
def can_rewrite(variable):
return (
inspect.isfunction(variable) and variable in _traceable_collective_remaps()
)
@staticmethod
def rewrite(tx, fn):
new_fn = _traceable_collective_remaps()[fn]
return new_fn, _traceable_collectives_source(tx, new_fn)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
# call_function must check any unsupported arguments and graph-break.
# It's safe to assume args/kwargs from orig_fn map 1:1 to args/kwargs of remapped_fn,
# since that's the contract for putting a mapping in `traceable_collective_remaps`
import torch.distributed as dist
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
# Merge args into kwargs so positional and keyword args
# can be processed the same way.
signature = inspect.signature(self.fn)
kwargs = dict(signature.bind(*args, **kwargs).arguments)
args = ()
if "async_op" in kwargs and kwargs["async_op"].as_python_constant():
unimplemented(
f"CollectiveFunctionRewriteVariable can't support async_op=True for {self.fn}"
)
if kwargs.get("group") is None or kwargs["group"].value is None:
kwargs["group"] = ProcessGroupVariable.get_global_pg_variable()
if self.fn == dist.all_reduce:
reduce_op_var = kwargs.get("op")
reduce_op = (
reduce_op_var.value
if reduce_op_var is not None
else signature.parameters["op"].default
)
if reduce_op not in REDUCE_OP_TO_STR:
raise ValueError(f"Unsupported all_reduce op: {reduce_op}")
kwargs["op"] = variables.ConstantVariable.create(
REDUCE_OP_TO_STR[reduce_op]
)
return self.replacement_var.call_function(tx, args, kwargs)
class FunctoolsPartialVariable(VariableTracker):
def __init__(self, func: VariableTracker, args, keywords, **kwargs):
super().__init__(**kwargs)
self.func = func
assert isinstance(args, list)
self.args = args
assert isinstance(keywords, dict)
self.keywords = keywords
def reconstruct(self, codegen):
codegen.load_import_from("functools", "partial")
codegen(self.func)
if self.args:
codegen.foreach(self.args)
if not self.keywords:
codegen.extend_output(create_call_function(len(self.args) + 1, True))
return
codegen.foreach(self.keywords.values())
keys = tuple(self.keywords.keys())
codegen.extend_output(
codegen.create_call_function_kw(len(keys) + len(self.args) + 1, keys, True)
)
def get_function(self):
return self.as_python_constant()
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
merged_args = self.args + args
merged_kwargs = {**self.keywords, **kwargs}
return self.func.call_function(tx, merged_args, merged_kwargs)
def call_hasattr(self, tx, name: str) -> VariableTracker:
# functools.partial uses slots, so attributes are constant
return variables.ConstantVariable.create(
hasattr(functools.partial(identity), name)
)
def as_python_constant(self):
return functools.partial(
self.func.as_python_constant(),
*[arg.as_python_constant() for arg in self.args],
**{k: v.as_python_constant() for k, v in self.keywords.items()},
)
def guard_as_python_constant(self):
"""Similar to as_python_constant(), but add ID_MATCH guards to try to force things to become constants"""
return functools.partial(
self.func.guard_as_python_constant(),
*[v.guard_as_python_constant() for v in self.args],
**{k: v.guard_as_python_constant() for k, v in self.keywords.items()},
)
class TritonKernelVariable(VariableTracker):
def __init__(self, kernel, kernel_idx, grid, **kwargs):
from triton.runtime.autotuner import Autotuner
from torch._higher_order_ops.triton_kernel_wrap import kernel_side_table
super().__init__(**kwargs)
assert kernel is not None
self.kernel = kernel
self.kernel_idx = kernel_side_table.add_kernel(kernel)
assert kernel_idx is None or self.kernel_idx == kernel_idx
self.grid = grid
if isinstance(kernel, Autotuner):
# We only support configs and keys arguments of triton.autotune
# Make sure other arguments are defaulted
defaults = inspect.signature(Autotuner.__init__).parameters
# Newer version of triton change attribute name from warmup to num_warmup and rep to num_rep.
# The call to get_first_attr is to maintain backward-compatibility.
if (
(
"warmup" in defaults
and defaults["warmup"].default
!= get_first_attr(kernel, "num_warmups", "warmup")
)
or (
"rep" in defaults
and defaults["rep"].default
!= get_first_attr(kernel, "num_reps", "rep")
)
or (
"prune_configs_by" in defaults
and defaults["prune_configs_by"].default
!= kernel.early_config_prune
)
# Set via reset_to_zero argument
or len(kernel.reset_idx) != 0
or len(kernel.restore_idx) != 0
):
raise Unsupported(
"Only configs and keys are supported for triton.autotune"
)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from triton.runtime.autotuner import Autotuner
from .constant import ConstantVariable
from .dicts import ConstDictVariable
from .lists import BaseListVariable
if self.grid is None:
raise Unsupported("Triton kernels should always be called with a grid")
# Both for grid's meta as well as for the kernel, we need combined
# args and kwargs normalized
names = (
variables.ConstantVariable.create(name) for name in self.kernel.arg_names
)
kwargs = {variables.ConstantVariable.create(k): v for k, v in kwargs.items()}
normalized_args = {**dict(zip(names, args)), **kwargs}
configs = (
[config.kwargs for config in self.kernel.configs]
if isinstance(self.kernel, Autotuner)
else [{}]
)
grids = []
for config_args in configs:
# If the grid is a function, then lets execute it and convert it to
# a list
grid = self.grid
if isinstance(grid, (NestedUserFunctionVariable, UserFunctionVariable)):
# Populate the special "meta" argument to call the grid function
config_args = {
ConstantVariable.create(k): ConstantVariable.create(v)
for k, v in config_args.items()
}
meta = ConstDictVariable({**normalized_args, **config_args}, dict)
grid = grid.call_function(tx, [meta], {})
# Now, the grid must be a list either originally or through above
# modification
if isinstance(grid, BaseListVariable):
grids.append(grid.as_proxy())
else:
unimplemented(f"grid for the triton kernel is {type(grid)}")
for i in range(len(grids)):
if not isinstance(grids[i], tuple):
raise Unsupported("Only tuple grids are supported")
# inductor expects all grids to be 3-tuple so lets make it
if len(grids[i]) == 1:
grids[i] = (grids[i][0], 1, 1)
elif len(grids[i]) == 2:
grids[i] = (grids[i][0], grids[i][1], 1)
elif len(grids[i]) > 3:
raise Unsupported("Grid can have at most rank 3")
assert len(grids) != 0
if len(set(grids)) == 1:
# If there's only one unique grid, lets simplify
grids = [grids[0]]
from torch._higher_order_ops.triton_kernel_wrap import (
triton_kernel_wrapper_mutation,
)
# Combine args and kwargs and pass as a dict so that if user defined triton
# kernel uses variables as 'grid' or 'kernel', it does not conflict with
# parameters of the wrapper function
meta = ConstDictVariable(normalized_args, dict)
tx.output.create_proxy(
"call_function",
triton_kernel_wrapper_mutation,
(),
{
"kernel_idx": self.kernel_idx,
"grid": grids,
"kwargs": meta.as_proxy(),
},
)
return variables.ConstantVariable(
None,
)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "__getitem__":
# __getitem__ should only be called if we don't already have a grid
# Only grid needs to be passed
if self.grid is not None or len(args) != 1:
raise Unsupported(
"Triton kernels should be called with only a single grid"
)
return TritonKernelVariable(
kernel=self.kernel,
kernel_idx=self.kernel_idx,
grid=args[0],
)
elif name == "run":
if "grid" not in kwargs:
raise Unsupported("Triton kernel requires to be called with a grid")
grid = kwargs.pop("grid")
kwargs.pop("warmup", None)
# rewrite kernel.run(*args, grid=grid) to kernel[grid](*args)
return TritonKernelVariable(
kernel=self.kernel, kernel_idx=self.kernel_idx, grid=grid
).call_function(tx, args, kwargs)
# Bail out to parent's implementation
return super().call_method(tx, name, args, kwargs)