Spaces:
Running
Running
import torch._functorch.apis as apis | |
import torch._functorch.eager_transforms as _impl | |
import torch._functorch.make_functional as _nn_impl | |
from torch._functorch.vmap import in_dims_t, out_dims_t | |
from torch._functorch.eager_transforms import argnums_t | |
import torch.nn as nn | |
import textwrap | |
from typing import Any, Callable, Optional, Tuple, Union | |
import warnings | |
""" | |
The APIs in this file are exposed as `functorch.*`. They are thin wrappers | |
around the torch.func.* APIs that have deprecation warnings -- we're trying | |
to move people to the torch.func.* equivalents. | |
NB: We don't use *args, **kwargs in the signatures because that changes the | |
documentation. | |
""" | |
def get_warning(api, new_api=None, replace_newlines=False): | |
if new_api is None: | |
new_api = f'torch.func.{api}' | |
warning = ( | |
f"We've integrated functorch into PyTorch. As the final step of the \n" | |
f"integration, functorch.{api} is deprecated as of PyTorch \n" | |
f"2.0 and will be deleted in a future version of PyTorch >= 2.3. \n" | |
f"Please use {new_api} instead; see the PyTorch 2.0 release notes \n" | |
f"and/or the torch.func migration guide for more details \n" | |
f"https://pytorch.org/docs/master/func.migrating.html" | |
) | |
if replace_newlines: | |
warning = warning.replace("\n", "") | |
return warning | |
def warn_deprecated(api, new_api=None): | |
warning = get_warning(api, new_api, replace_newlines=True) | |
warnings.warn(warning, stacklevel=2) | |
def setup_docs(functorch_api, torch_func_api=None, new_api_name=None): | |
api_name = functorch_api.__name__ | |
if torch_func_api is None: | |
torch_func_api = getattr(_impl, api_name) | |
# See https://docs.python.org/3/using/cmdline.html#cmdoption-OO | |
if torch_func_api.__doc__ is None: | |
return | |
warning = get_warning(api_name, new_api_name) | |
warning_note = "\n.. warning::\n\n" + textwrap.indent(warning, " ") | |
warning_note = textwrap.indent(warning_note, " ") | |
functorch_api.__doc__ = torch_func_api.__doc__ + warning_note | |
def vmap( | |
func: Callable, | |
in_dims: in_dims_t = 0, | |
out_dims: out_dims_t = 0, | |
randomness: str = 'error', | |
*, | |
chunk_size=None) -> Callable: | |
warn_deprecated('vmap', 'torch.vmap') | |
return apis.vmap(func, in_dims, out_dims, randomness, chunk_size=chunk_size) | |
def grad(func: Callable, argnums: argnums_t = 0, has_aux: bool = False) -> Callable: | |
warn_deprecated('grad') | |
return apis.grad(func, argnums, has_aux) | |
def grad_and_value(func: Callable, argnums: argnums_t = 0, has_aux: bool = False) -> Callable: | |
warn_deprecated('grad_and_value') | |
return apis.grad_and_value(func, argnums, has_aux) | |
def vjp(func: Callable, *primals, has_aux: bool = False): | |
warn_deprecated('vjp') | |
return _impl.vjp(func, *primals, has_aux=has_aux) | |
def jvp(func: Callable, primals: Any, tangents: Any, *, strict: bool = False, has_aux: bool = False): | |
warn_deprecated('jvp') | |
return _impl.jvp(func, primals, tangents, strict=strict, has_aux=has_aux) | |
def jacrev(func: Callable, argnums: Union[int, Tuple[int]] = 0, *, has_aux=False, | |
chunk_size: Optional[int] = None, | |
_preallocate_and_copy=False): | |
warn_deprecated('jacrev') | |
return _impl.jacrev(func, argnums, has_aux=has_aux, chunk_size=chunk_size, | |
_preallocate_and_copy=_preallocate_and_copy) | |
def jacfwd(func: Callable, argnums: argnums_t = 0, has_aux: bool = False, *, randomness: str = "error"): | |
warn_deprecated('jacfwd') | |
return _impl.jacfwd(func, argnums, has_aux, randomness=randomness) | |
def hessian(func, argnums=0): | |
warn_deprecated('hessian') | |
return _impl.hessian(func, argnums=argnums) | |
def functionalize(func: Callable, *, remove: str = 'mutations') -> Callable: | |
warn_deprecated('functionalize') | |
return _impl.functionalize(func, remove=remove) | |
def make_functional(model: nn.Module, disable_autograd_tracking: bool = False): | |
warn_deprecated('make_functional', 'torch.func.functional_call') | |
return _nn_impl.make_functional(model, disable_autograd_tracking) | |
def make_functional_with_buffers(model: nn.Module, disable_autograd_tracking: bool = False): | |
warn_deprecated('make_functional_with_buffers', 'torch.func.functional_call') | |
return _nn_impl.make_functional_with_buffers(model, disable_autograd_tracking) | |
def combine_state_for_ensemble(models): | |
warn_deprecated('combine_state_for_ensemble', 'torch.func.stack_module_state') | |
return _nn_impl.combine_state_for_ensemble(models) | |
setup_docs(vmap, apis.vmap, 'torch.vmap') | |
setup_docs(grad, apis.grad) | |
setup_docs(grad_and_value, apis.grad_and_value) | |
setup_docs(vjp) | |
setup_docs(jvp) | |
setup_docs(jacrev) | |
setup_docs(jacfwd) | |
setup_docs(hessian) | |
setup_docs(functionalize) | |
setup_docs(make_functional, _nn_impl.make_functional, | |
'torch.func.functional_call') | |
setup_docs(make_functional_with_buffers, _nn_impl.make_functional, | |
'torch.func.functional_call') | |
setup_docs(combine_state_for_ensemble, _nn_impl.combine_state_for_ensemble, | |
'torch.func.stack_module_state') | |