Spaces:
Running
Running
from torch.distributions import constraints | |
from torch.distributions.gamma import Gamma | |
__all__ = ["Chi2"] | |
class Chi2(Gamma): | |
r""" | |
Creates a Chi-squared distribution parameterized by shape parameter :attr:`df`. | |
This is exactly equivalent to ``Gamma(alpha=0.5*df, beta=0.5)`` | |
Example:: | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> m = Chi2(torch.tensor([1.0])) | |
>>> m.sample() # Chi2 distributed with shape df=1 | |
tensor([ 0.1046]) | |
Args: | |
df (float or Tensor): shape parameter of the distribution | |
""" | |
arg_constraints = {"df": constraints.positive} | |
def __init__(self, df, validate_args=None): | |
super().__init__(0.5 * df, 0.5, validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(Chi2, _instance) | |
return super().expand(batch_shape, new) | |
def df(self): | |
return self.concentration * 2 | |