Kano001's picture
Upload 5252 files
c61ccee verified
raw
history blame
45.7 kB
import ast
import dataclasses
import inspect
import re
import string
import sys
from collections import namedtuple
from textwrap import dedent
from typing import List, Tuple # noqa: F401
import torch
import torch.jit.annotations
from torch import _jit_internal
from torch._C._jit_tree_views import (
Apply,
Assert,
Assign,
Attribute,
AugAssign,
BinOp,
Break,
ClassDef,
Const,
Continue,
Decl,
Def,
Delete,
DictComp,
DictLiteral,
Dots,
EmptyTypeAnnotation,
ExprStmt,
FalseLiteral,
For,
Ident,
If,
ListComp,
ListLiteral,
NoneLiteral,
Param,
Pass,
Property,
Raise,
Return,
Select,
SliceExpr,
Starred,
Stmt,
StringLiteral,
Subscript,
TernaryIf,
TrueLiteral,
TupleLiteral,
UnaryOp,
Var,
While,
With,
WithItem,
)
from torch._jit_internal import ( # noqa: F401
_is_drop_fn,
FunctionModifiers,
is_static_fn,
should_drop,
)
from torch._sources import (
get_source_lines_and_file,
make_source_context,
parse_def,
ParsedDef as _ParsedDef,
)
from torch.jit._dataclass_impls import DATACLASS_MAGIC_METHODS
from torch.jit._monkeytype_config import get_qualified_name, monkeytype_trace
_IS_ASTUNPARSE_INSTALLED = False
try:
import astunparse # type: ignore[import]
_IS_ASTUNPARSE_INSTALLED = True
except ImportError:
pass
# Borrowed from cPython implementation
# https://github.com/python/cpython/blob/561612d8456cfab5672c9b445521113b847bd6b3/Lib/textwrap.py#L411#
_reserved_prefix = "__jit"
_reserved_names = {"print"}
_identifier_chars = set(string.ascii_lowercase + string.ascii_uppercase + string.digits)
def is_reserved_name(name):
return name.startswith(_reserved_prefix) or name in _reserved_names
pretty_node_names = {
ast.FunctionDef: "function definitions",
ast.For: "for loops",
ast.Delete: "del statements",
ast.ClassDef: "class definitions",
ast.With: "with statements",
ast.Raise: "raise statements",
ast.Assert: "assertions",
ast.Import: "import statements",
ast.ImportFrom: "import statements",
ast.Global: "global variables",
ast.Break: "break statements",
ast.Continue: "continue statements",
}
node_start_tokens = {
ast.FunctionDef: "def",
ast.For: "for",
ast.Delete: "del",
ast.ClassDef: "class",
ast.With: "with",
ast.Raise: "raise",
ast.Assert: "assert",
ast.Import: "import",
ast.ImportFrom: "from",
ast.Global: "global",
ast.Break: "break",
ast.Continue: "continue",
}
pretty_node_names.update(
{
ast.AsyncFunctionDef: "async function definitions",
ast.AsyncFor: "async for loops",
ast.AsyncWith: "async with statements",
ast.Try: "try blocks",
ast.Nonlocal: "nonlocal variables",
}
)
node_start_tokens.update(
{
ast.AsyncFunctionDef: "async def",
ast.AsyncFor: "async for",
ast.AsyncWith: "async with",
ast.Try: "try",
ast.Nonlocal: "nonlocal",
}
)
pretty_node_names.update(
{
ast.AnnAssign: "annotated assignments",
}
)
# NB: no specific token for AnnAssign
class FrontendError(Exception):
def __init__(self, source_range, msg):
self.source_range = source_range
self.msg = msg
# This has to be instantiated here so the ErrorReport is accurate to the
# call stack when the FrontendError was raised
self.error_report = torch._C.ErrorReport(self.source_range)
def __str__(self):
return self.msg + self.error_report.what().lstrip()
class NotSupportedError(FrontendError):
pass
class UnsupportedNodeError(NotSupportedError):
def __init__(self, ctx, offending_node, reason=""):
# If we don't have a specific token, we default to length of 1
node_type = type(offending_node)
range_len = len(node_start_tokens.get(node_type, " "))
source_range = ctx.make_range(
offending_node.lineno,
offending_node.col_offset,
offending_node.col_offset + range_len,
)
feature_name = pretty_node_names.get(node_type, node_type.__name__)
msg = f"{feature_name} {reason + ' ' if reason else ''}aren't supported"
super().__init__(source_range, msg)
class FrontendTypeError(FrontendError):
pass
def build_withitems(ctx, items):
items = [build_withitem(ctx, i) for i in items]
return list(items)
def build_stmts(ctx, stmts):
stmts = [build_stmt(ctx, s) for s in stmts]
return list(filter(None, stmts))
def get_class_properties(cls, self_name):
"""
Get a list of Property objects representing the properties of a class.
Args:
cls: The class to get properties of.
self_name: The name of the class that the properties should belong to.
Returns:
A list of Property objects corresponding to the properties of cls. Property
here refers to the subclass of TreeView.
"""
props = inspect.getmembers(cls, predicate=lambda m: isinstance(m, property))
# Any property that should not compiled must be in this list on the Module.
unused_properties = getattr(cls, "__jit_unused_properties__", [])
# Create Property TreeView objects from inspected property objects.
properties = []
for prop in props:
if prop[0] not in unused_properties and not should_drop(prop[1].fget):
getter = get_jit_def(
prop[1].fget, f"__{prop[0]}_getter", self_name=self_name
)
setter = (
get_jit_def(prop[1].fset, f"__{prop[0]}_setter", self_name=self_name)
if prop[1].fset
else None
)
properties.append(
Property(getter.range(), Ident(getter.range(), prop[0]), getter, setter)
)
return properties
def get_class_assigns(ctx, cls_ast):
assigns = []
def maybe_build_assign(builder, entry):
nonlocal assigns
try:
assigns.append(builder(ctx, entry))
except NotSupportedError:
pass
for entry in cls_ast.body:
if isinstance(entry, ast.Assign):
maybe_build_assign(StmtBuilder.build_Assign, entry)
elif isinstance(entry, ast.AnnAssign):
maybe_build_assign(StmtBuilder.build_AnnAssign, entry)
return assigns
def get_jit_class_def(cls, self_name):
# Get defs for each method within the current class independently
# TODO: proper overriding analysis when implementing class inheritance
methods = inspect.getmembers(
cls,
predicate=lambda m: (inspect.ismethod(m) or inspect.isfunction(m))
and not is_static_fn(cls, m.__name__)
and m.__name__ in cls.__dict__
and not _is_drop_fn(m),
)
def is_classmethod(fn):
return inspect.ismethod(fn) and getattr(fn, "__self__", None) == cls
# Get and parse the source code for this class
sourcelines, file_lineno, filename = get_source_lines_and_file(
cls, torch._C.ErrorReport.call_stack()
)
source = "".join(sourcelines)
dedent_src = dedent(source)
py_ast = ast.parse(dedent_src)
class_ast = py_ast.body[0]
assert isinstance(class_ast, ast.ClassDef)
# Special case for dataclasses. In general we need access to the source code for
# an object in order to JIT compile it. But the dataclasses module dynamically synthesizes
# magic methods for classes, and we can't get the source code for these methods. As a
# workaround, we synthesize TorchScript-friendly implementations ourselves.
if dataclasses.is_dataclass(cls):
# Detect whether the user manually implemented any of the magic methods. If they did,
# we don't want to synthesize/override them.
overrides = {
method.name
for method in class_ast.body
if isinstance(method, ast.FunctionDef)
and method.name in DATACLASS_MAGIC_METHODS
}
for i, (name, _) in enumerate(methods):
# Is this a magic method we can synthesize?
synthesizer_fn = DATACLASS_MAGIC_METHODS.get(name)
if synthesizer_fn and name not in overrides:
parsed_def = synthesizer_fn(cls)
methods[i] = name, parsed_def
func = getattr(cls, name)
_jit_internal.loader.cache(func, parsed_def.source)
method_defs = [
get_jit_def(obj, name, self_name=self_name, is_classmethod=is_classmethod(obj))
for (name, obj) in methods
]
properties = get_class_properties(cls, self_name)
leading_whitespace_len = len(source.split("\n", 1)[0]) - len(
dedent_src.split("\n", 1)[0]
)
ctx = make_source_context(
source, filename, file_lineno, leading_whitespace_len, False
)
assigns = get_class_assigns(ctx, class_ast)
return build_class_def(ctx, class_ast, method_defs, properties, self_name, assigns)
def get_jit_def(fn, def_name, self_name=None, is_classmethod=False):
"""
Build a JIT AST (TreeView) from the given function.
Args:
fn: A function object to compile or a pre-parsed ParsedDef object
def_name: The name to give to the resulting AST object. This is not
always the same as `fn.__name__`, for example:
def _forward(self):
...
forward = _forward
In this case, the `__name__` attribute of the function object is "_forward",
but we want the result AST to have the name "forward".
self_name: If this function is a method, what the type name of `self` is.
"""
parsed_def = parse_def(fn) if not isinstance(fn, _ParsedDef) else fn
type_line = torch.jit.annotations.get_type_line(parsed_def.source)
fn_def = parsed_def.ast.body[0]
if is_classmethod:
arg_name = fn_def.args.args[0].arg
# Insert a statement that assigns the first argument to the class
assign_stmt = ast.parse(f"{arg_name} = {self_name}").body[0]
fn_def.body.insert(0, assign_stmt)
# Swap out the function signature and body if it is unused
if should_drop(fn):
unused_fn_def = ast.parse(
'def unused_fn(self: Any):\n\traise RuntimeError("Cannot call @unused methods")'
)
if len(unused_fn_def.body) != 1 or not isinstance(
unused_fn_def.body[0], ast.FunctionDef
):
raise RuntimeError(
f"Expected a single top-level function: {parsed_def.filename}:{parsed_def.file_lineno}"
)
unused_def = unused_fn_def.body[0]
fn_def.body = unused_def.body
# kwarg/vararg not supported by `build_def`
fn_def.args.kwarg = fn_def.args.vararg = None
for arg in fn_def.args.args + fn_def.args.kwonlyargs:
# Replace potentially unsupported type annotations by "Any"
arg.annotation = unused_def.args.args[0].annotation
if _is_drop_fn(fn):
# Dropping potentially unsupported return type annotation for jit._drop
fn_def.returns = None
fn_def.type_comment = None
# If MonkeyType is installed, get all the consolidated type traces
# for the arguments from type_trace_db
type_trace_db = torch.jit._script._get_type_trace_db()
pdt_arg_types = None
if monkeytype_trace and not isinstance(fn, _ParsedDef): # type: ignore[truthy-function]
qualname = get_qualified_name(fn)
pdt_arg_types = type_trace_db.get_args_types(qualname)
return build_def(
parsed_def.ctx,
fn_def,
type_line,
def_name,
self_name=self_name,
pdt_arg_types=pdt_arg_types,
)
# TODO: more robust handling of recognizing ignore context manager
def is_torch_jit_ignore_context_manager(stmt):
# checks if the statement is torch.jit.ignore context manager
if isinstance(stmt.items[0].context_expr, ast.Call):
# extract torch part
function = stmt.items[0].context_expr.func
if isinstance(function, ast.Attribute):
attr_name = function.attr
attr_value = function.value
if attr_name == "_IgnoreContextManager" and isinstance(
attr_value, ast.Attribute
):
# there should be at most two nested attributes (e.g torch.jit._IgnoreContextManager)
if attr_value.attr == "jit" and isinstance(attr_value.value, ast.Name):
if attr_value.value.id == "torch":
return True
return False
class Builder:
def __call__(self, ctx, node):
method = getattr(self, "build_" + node.__class__.__name__, None)
if method is None:
raise UnsupportedNodeError(ctx, node)
return method(ctx, node)
def build_class_def(ctx, py_def, methods, properties, self_name, assigns):
r = ctx.make_range(
py_def.lineno, py_def.col_offset, py_def.col_offset + len("class")
)
return ClassDef(
Ident(r, self_name), [Stmt(method) for method in methods], properties, assigns
)
def build_def(ctx, py_def, type_line, def_name, self_name=None, pdt_arg_types=None):
body = py_def.body
r = ctx.make_range(py_def.lineno, py_def.col_offset, py_def.col_offset + len("def"))
param_list = build_param_list(ctx, py_def.args, self_name, pdt_arg_types)
return_type = None
if getattr(py_def, "returns", None) is not None:
return_type = build_expr(ctx, py_def.returns)
decl = Decl(r, param_list, return_type)
is_method = self_name is not None
if type_line is not None:
type_comment_decl = torch._C.parse_type_comment(type_line)
decl = torch._C.merge_type_from_type_comment(decl, type_comment_decl, is_method)
return Def(Ident(r, def_name), decl, build_stmts(ctx, body))
_vararg_kwarg_err = (
"Compiled functions can't take variable number of arguments "
"or use keyword-only arguments with defaults"
)
def build_param_list(ctx, py_args, self_name, pdt_arg_types=None):
if py_args.kwarg is not None:
expr = py_args.kwarg
ctx_range = ctx.make_range(
expr.lineno, expr.col_offset - 1, expr.col_offset + len(expr.arg)
)
raise NotSupportedError(ctx_range, _vararg_kwarg_err)
if py_args.vararg is not None:
expr = py_args.vararg
ctx_range = ctx.make_range(
expr.lineno, expr.col_offset - 1, expr.col_offset + len(expr.arg)
)
raise NotSupportedError(ctx_range, _vararg_kwarg_err)
if len(py_args.kw_defaults) > 0:
# kw_defaults is a list of the values for the kwargs (which default to None),
# so they don't actually have line numbers.
for arg in py_args.kw_defaults:
if arg is not None:
ctx_range = build_expr(ctx, arg).range()
raise NotSupportedError(ctx_range, _vararg_kwarg_err)
# List of Tuple of args and type as inferred by profile directed typing
arg_and_types = [
(
arg,
pdt_arg_types[arg.arg]
if pdt_arg_types and bool(pdt_arg_types[arg.arg])
else None,
)
for arg in py_args.args
]
arg_and_types_kwonlyargs = [
(
arg,
pdt_arg_types[arg.arg]
if pdt_arg_types and bool(pdt_arg_types[arg.arg])
else None,
)
for arg in py_args.kwonlyargs
]
result = [
build_param(ctx, arg, self_name, kwarg_only=False, pdt_arg_type=arg_type)
for arg, arg_type in arg_and_types
]
result += [
build_param(ctx, arg, self_name, kwarg_only=True, pdt_arg_type=arg_type)
for arg, arg_type in arg_and_types_kwonlyargs
]
return result
def build_param(ctx, py_arg, self_name, kwarg_only, pdt_arg_type=None):
# NB: In Python3 py_arg is a pair of (str arg, expr? annotation)
name = py_arg.arg
r = ctx.make_range(py_arg.lineno, py_arg.col_offset, py_arg.col_offset + len(name))
if getattr(py_arg, "annotation", None) is not None:
annotation_expr = build_expr(ctx, py_arg.annotation)
elif pdt_arg_type:
annotation_expr = Var(Ident(r, pdt_arg_type))
elif self_name is not None and name == "self":
annotation_expr = Var(Ident(r, self_name))
else:
annotation_expr = EmptyTypeAnnotation(r)
return Param(annotation_expr, Ident(r, name), kwarg_only)
def build_ignore_context_manager(ctx, stmt):
InputType = namedtuple("InputType", ["name", "ann"])
OutputType = namedtuple("OutputType", ["name", "ann"])
def process_ins_outs(args):
# parse the context manager to figure out inputs and outputs
# with their annotated types
# TODO: add input, output validator
inputs = []
outputs = []
for arg in args:
var_name = arg.arg
var_ann = arg.value.value
var_decl_type, var_ann = var_ann.split(":")
if var_decl_type == "inp":
inputs.append(InputType(var_name, var_ann))
if var_decl_type == "out":
outputs.append(OutputType(var_name, var_ann))
return inputs, outputs
def create_unique_name_ext(ctx, stmt):
# extension will be based on the full path filename plus
# the line number of original context manager
fn = re.sub(r"[^a-zA-Z0-9_]", "_", ctx.filename)
return f"{fn}_{stmt.lineno}"
def build_return_ann_stmt(outputs):
return_type_ann = ""
return_statement_str = "return "
if len(outputs) == 0:
return_type_ann += " -> None"
if len(outputs) == 1:
return_type_ann = " -> " + outputs[0].ann
return_statement_str += outputs[0].name
if len(outputs) > 1:
return_type_ann = " -> Tuple"
return_type_ann += "[" + ", ".join([var.ann for var in outputs]) + "]"
return_statement_str += ", ".join([var.name for var in outputs])
return return_type_ann, return_statement_str
def build_args(args):
return ", ".join([arg.name for arg in args])
inputs, outputs = process_ins_outs(stmt.items[0].context_expr.keywords)
# build the replacement function str with given inputs and outputs
ignore_function_name = "func_ignore_" + create_unique_name_ext(ctx, stmt)
ignore_function_str = "\ndef " + ignore_function_name
ignore_function_str += (
"(" + ", ".join([var.name + " :" + var.ann for var in inputs]) + ")"
)
return_ann, return_stmt = build_return_ann_stmt(outputs)
ignore_function_str += return_ann + ": pass"
# first create the functionDef object from just declaration
ignore_function = ast.parse(ignore_function_str).body[0]
# dump the body of context manager to dummy function
ignore_function.body = stmt.body # type: ignore[attr-defined]
# insert return statement to the function
return_stmt = ast.parse(return_stmt).body[0]
ignore_function.body.append(return_stmt) # type: ignore[attr-defined]
# registers the custom function in the global context
ignore_func_str = "@torch.jit.ignore\n" + astunparse.unparse(ignore_function)
ignore_func_str += f'\nglobals()["{ignore_function_name}"] = {ignore_function_name}'
exec(ignore_func_str) # noqa: P204
# build the statements as:
# <out_1>, <out_2>, ... = torch.jit.frontend.<func>(<in_1>, <in_2>)
assign_str_lhs = build_args(outputs)
# this function will be registered in torch.jit.frontend module by default
assign_str_rhs = (
f"torch.jit.frontend.{ignore_function_name}(" + build_args(inputs) + ")"
)
if len(outputs) > 0:
assign_str = assign_str_lhs + " = " + assign_str_rhs
else:
assign_str = assign_str_rhs
assign_ast = ast.parse(assign_str).body[0]
return assign_ast
def get_default_args(fn):
if fn is None:
return {}
signature = inspect.signature(fn)
return {
k: v.default
for k, v in signature.parameters.items()
if v.default is not inspect.Parameter.empty
}
def get_default_args_for_class(cls):
"""
Get default arguments for all methods in a class (except for static methods).
Args:
cls: type - The class type to inspect for default arguments.
Returns:
A Dict[str, Dict[str, Any]] which maps each method name to a Dict[str, Any]
that maps each argument name to its default value.
"""
# Get methods (except static methods because those are compiled separately as
# if they were independent script functions).
methods = inspect.getmembers(
cls,
predicate=lambda m: (inspect.ismethod(m) or inspect.isfunction(m))
and not is_static_fn(cls, m.__name__)
and m.__name__ in cls.__dict__,
)
# Get method defaults. Property defaults do not need to be considered
# because setters cannot be invoked without a value.
defaults = {
method_name: get_default_args(method_impl)
for method_name, method_impl in methods
}
return defaults
class WithItemBuilder(Builder):
@staticmethod
def build_withitem(ctx, item):
lineno = item.context_expr.lineno
start = item.context_expr.col_offset
end = start + len(pretty_node_names[ast.With])
op_vars = item.optional_vars
r = ctx.make_range(lineno, start, end)
return WithItem(
r,
build_expr(ctx, item.context_expr),
build_expr(ctx, op_vars) if op_vars else None,
)
class StmtBuilder(Builder):
augassign_map = {
ast.Add: "+",
ast.Sub: "-",
ast.Mult: "*",
ast.Div: "/",
ast.Mod: "%",
ast.BitOr: "|",
ast.BitAnd: "&",
ast.BitXor: "^",
ast.LShift: "<<",
ast.RShift: ">>",
ast.Pow: "**",
}
@staticmethod
def build_Expr(ctx, stmt):
value = stmt.value
if value.__class__.__name__ == "Str":
# If a statement is a string literal expression,
# then it is a docstring. Just ignore it.
return None
else:
return ExprStmt(build_expr(ctx, value))
@staticmethod
def build_Assign(ctx, stmt):
rhs = build_expr(ctx, stmt.value)
lhs = [build_expr(ctx, x) for x in stmt.targets]
return Assign(lhs, rhs)
@staticmethod
def build_AnnAssign(ctx, stmt):
if stmt.value is None:
raise UnsupportedNodeError(ctx, stmt, reason="without assigned value")
# Disallow type annotations on instance attributes outside of __init__
if (
type(stmt.target) == ast.Attribute
and stmt.target.value.id == "self" # type: ignore[attr-defined]
and ctx.funcname != "__init__"
):
start = stmt.col_offset
end = start + len(f"self.{stmt.target.attr}")
if hasattr(stmt.annotation, "id"):
end += len(f": {stmt.annotation.id}")
sr = ctx.make_range(stmt.lineno, start, end)
raise ValueError(
"Type annotations on instance attributes must be declared in "
f"__init__, not '{ctx.funcname}': {sr}"
)
rhs = build_expr(ctx, stmt.value)
lhs = build_expr(ctx, stmt.target)
the_type = build_expr(ctx, stmt.annotation)
return Assign([lhs], rhs, the_type)
@staticmethod
def build_Delete(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("del"))
return Delete(r, [build_expr(ctx, target) for target in stmt.targets])
@staticmethod
def build_Return(ctx, stmt):
r = ctx.make_range(
stmt.lineno, stmt.col_offset, stmt.col_offset + len("return")
)
return Return(r, None if stmt.value is None else build_expr(ctx, stmt.value))
@staticmethod
def build_Raise(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("raise"))
expr = build_expr(ctx, stmt.exc)
return Raise(r, expr)
@staticmethod
def build_Assert(ctx, stmt):
r = ctx.make_range(
stmt.lineno, stmt.col_offset, stmt.col_offset + len("assert")
)
test = build_expr(ctx, stmt.test)
msg = build_expr(ctx, stmt.msg) if stmt.msg is not None else None
return Assert(r, test, msg)
@staticmethod
def build_AugAssign(ctx, stmt):
lhs = build_expr(ctx, stmt.target)
rhs = build_expr(ctx, stmt.value)
op = type(stmt.op)
if op in StmtBuilder.augassign_map:
op_token = StmtBuilder.augassign_map[op]
else:
raise NotSupportedError(
find_before(ctx, rhs.range().start, "=", offsets=(-1, 0)),
"unsupported kind of augmented assignment: " + op.__name__,
)
return AugAssign(lhs, op_token, rhs)
@staticmethod
def build_While(ctx, stmt):
if stmt.orelse:
# TODO: try to recover the location of else:? Python doesn't give us useful
# annotations in this case
raise NotSupportedError(
None, "else branches of while loops aren't supported"
)
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("while"))
return While(r, build_expr(ctx, stmt.test), build_stmts(ctx, stmt.body))
@staticmethod
def build_For(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("for"))
if stmt.orelse:
raise NotSupportedError(r, "else branches of for loops aren't supported")
return For(
r,
[build_expr(ctx, stmt.target)],
[build_expr(ctx, stmt.iter)],
build_stmts(ctx, stmt.body),
)
@staticmethod
def build_If(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("if"))
return If(
r,
build_expr(ctx, stmt.test),
build_stmts(ctx, stmt.body),
build_stmts(ctx, stmt.orelse),
)
@staticmethod
def build_Print(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("print"))
if stmt.dest:
raise NotSupportedError(
r, "print statements with non-default destinations aren't supported"
)
args = [build_expr(ctx, val) for val in stmt.values]
return ExprStmt(Apply(Var(Ident(r, "print")), args, []))
@staticmethod
def build_Pass(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("pass"))
return Pass(r)
@staticmethod
def build_Break(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("break"))
return Break(r)
@staticmethod
def build_Continue(ctx, stmt):
r = ctx.make_range(
stmt.lineno, stmt.col_offset, stmt.col_offset + len("continue")
)
return Continue(r)
@staticmethod
def build_With(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("with"))
# Handle ignore context manager
if is_torch_jit_ignore_context_manager(stmt):
if not _IS_ASTUNPARSE_INSTALLED:
raise RuntimeError(
"torch.jit._IgnoreContextManager requires installing Python library `astunparse`, \
please install it in your Python environment"
)
assign_ast = build_ignore_context_manager(ctx, stmt)
return build_stmt(ctx, assign_ast)
return With(r, build_withitems(ctx, stmt.items), build_stmts(ctx, stmt.body))
class ExprBuilder(Builder):
binop_map = {
ast.Add: "+",
ast.Sub: "-",
ast.Mult: "*",
ast.Div: "/",
ast.Pow: "**",
ast.Mod: "%",
ast.FloorDiv: "//",
ast.BitAnd: "&",
ast.BitXor: "^",
ast.BitOr: "|",
ast.LShift: "<<",
ast.RShift: ">>",
}
binop_map[ast.MatMult] = "@"
unop_map = {
ast.Not: "not",
ast.USub: "-",
ast.Invert: "~",
}
boolop_map = {
ast.And: "and",
ast.Or: "or",
}
cmpop_map = {
ast.Eq: "==",
ast.NotEq: "!=",
ast.LtE: "<=",
ast.Lt: "<",
ast.GtE: ">=",
ast.Gt: ">",
ast.Is: "is",
ast.IsNot: "is not",
ast.In: "in",
ast.NotIn: "not in",
}
@staticmethod
def build_Attribute(ctx, expr):
base = build_expr(ctx, expr.value)
# expr.attr is just a string, so it's not annotated in any way, so we have
# to build the range manually
source = ctx.source.encode("utf-8")
def get_char(index):
return chr(source[index])
start_pos = base.range().end + 1
while get_char(start_pos) in string.whitespace: # Skip whitespace
start_pos += 1
end_pos = start_pos + len(expr.attr)
name_range = ctx.make_raw_range(start_pos, end_pos)
return Select(base, Ident(name_range, expr.attr))
@staticmethod
def build_Call(ctx, expr):
func = build_expr(ctx, expr.func)
args = [build_expr(ctx, py_arg) for py_arg in expr.args]
if hasattr(expr, "starargs") and expr.starargs:
stararg_expr = build_expr(ctx, expr.starargs)
args += [Starred(stararg_expr.range(), stararg_expr)]
kwargs = []
for kw in expr.keywords:
kw_expr = build_expr(ctx, kw.value)
# XXX: we could do a better job at figuring out the range for the name here
if not kw.arg:
raise NotSupportedError(
kw_expr.range(), "keyword-arg expansion is not supported"
)
kwargs.append(Attribute(Ident(kw_expr.range(), kw.arg), kw_expr))
return Apply(func, args, kwargs)
@staticmethod
def build_Ellipsis(ctx, expr):
r = ctx.make_range(
expr.lineno, expr.col_offset, expr.col_offset + 3
) # len("...") == 3
return Dots(r)
@staticmethod
def build_Name(ctx, expr):
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(expr.id))
if expr.id.startswith(_reserved_prefix):
raise NotSupportedError(
r,
"names of variables used in JIT-ed functions "
"can't start with " + _reserved_prefix,
)
if expr.id == "True":
return TrueLiteral(r)
elif expr.id == "False":
return FalseLiteral(r)
elif expr.id == "None":
return NoneLiteral(r)
elif expr.id == "Ellipsis":
return Dots(r)
return Var(Ident(r, expr.id))
@staticmethod
def build_NameConstant(ctx, expr):
r = ctx.make_range(
expr.lineno, expr.col_offset, expr.col_offset + len(str(expr.value))
)
if expr.value is True:
return TrueLiteral(r)
elif expr.value is False:
return FalseLiteral(r)
elif expr.value is None:
return NoneLiteral(r)
elif expr.value == Ellipsis:
return Dots(r)
else:
raise ValueError("Name constant value unsupported: " + str(expr.value))
@staticmethod
def build_BinOp(ctx, expr):
lhs = build_expr(ctx, expr.left)
rhs = build_expr(ctx, expr.right)
op = type(expr.op)
if op == ast.Div and not ctx.uses_true_division:
err_range = ctx.make_raw_range(lhs.range().end, rhs.range().start)
raise FrontendError(
err_range,
"Division of ints in TorchScript uses Python 3 true "
"division semantics. Please put `from __future__ "
"import division` at the top of your file",
)
op_token = ExprBuilder.binop_map.get(op)
if op_token is None:
err_range = ctx.make_raw_range(lhs.range().end, rhs.range().start)
raise NotSupportedError(
err_range, "unsupported binary operator: " + op.__name__
)
return BinOp(op_token, lhs, rhs)
@staticmethod
def build_UnaryOp(ctx, expr):
sub_expr = build_expr(ctx, expr.operand)
op = type(expr.op)
op_token = ExprBuilder.unop_map.get(op)
if op_token is None:
raise NotSupportedError(
expr.range(), "unsupported unary operator: " + op.__name__
)
r = ctx.make_range(
expr.lineno, expr.col_offset, expr.col_offset + len(op_token)
)
return UnaryOp(r, op_token, sub_expr)
@staticmethod
def build_BoolOp(ctx, expr):
if len(expr.values) < 2:
raise AssertionError(
"expected at least 2 values in BoolOp, but got " + str(len(expr.values))
)
sub_exprs = [build_expr(ctx, sub_expr) for sub_expr in expr.values]
op = type(expr.op)
op_token = ExprBuilder.boolop_map.get(op)
if op_token is None:
err_range = ctx.make_raw_range(
sub_exprs[0].range().end, sub_exprs[1].range().start
)
raise NotSupportedError(
err_range, "unsupported boolean operator: " + op.__name__
)
lhs = sub_exprs[0]
for rhs in sub_exprs[1:]:
lhs = BinOp(op_token, lhs, rhs)
return lhs
@staticmethod
def build_IfExp(ctx, expr):
return TernaryIf(
build_expr(ctx, expr.test),
build_expr(ctx, expr.body),
build_expr(ctx, expr.orelse),
)
@staticmethod
def build_Compare(ctx, expr):
operands = [build_expr(ctx, e) for e in [expr.left] + list(expr.comparators)]
result = None
for lhs, op_, rhs in zip(operands, expr.ops, operands[1:]):
op = type(op_)
op_token = ExprBuilder.cmpop_map.get(op)
r = ctx.make_raw_range(lhs.range().end, rhs.range().start)
if op_token is None:
raise NotSupportedError(
r, "unsupported comparison operator: " + op.__name__
)
if op == ast.NotIn:
# NB: `not in` is just `not( in )`, so we don't introduce new tree view
# but just make it a nested call in our tree view structure
in_expr = BinOp("in", lhs, rhs)
cmp_expr = UnaryOp(r, "not", in_expr)
else:
cmp_expr = BinOp(op_token, lhs, rhs)
if result is None:
result = cmp_expr
else:
result = BinOp("and", result, cmp_expr)
return result
@staticmethod
def build_Subscript(ctx, expr):
def build_SliceExpr(ctx, base, slice_expr):
lower = (
build_expr(ctx, slice_expr.lower)
if slice_expr.lower is not None
else None
)
upper = (
build_expr(ctx, slice_expr.upper)
if slice_expr.upper is not None
else None
)
step = (
build_expr(ctx, slice_expr.step)
if slice_expr.step is not None
else None
)
return SliceExpr(base.range(), lower, upper, step)
def build_Index(ctx, base, index_expr):
if isinstance(index_expr.value, ast.Tuple):
raise NotSupportedError(
base.range(),
"slicing multiple dimensions with tuples not supported yet",
)
return build_expr(ctx, index_expr.value)
def build_ExtSlice(ctx, base, extslice):
sub_exprs = []
for expr in extslice.dims:
sub_type = type(expr)
if sub_type is ast.Index:
sub_exprs.append(build_Index(ctx, base, expr))
elif sub_type is ast.Slice:
sub_exprs.append(build_SliceExpr(ctx, base, expr))
elif sub_type is ast.Ellipsis:
sub_exprs.append(Dots(base.range()))
else:
raise NotSupportedError(
base.range(),
f"slicing multiple dimensions with {sub_type} not supported",
)
return sub_exprs
base = build_expr(ctx, expr.value)
sub_type = type(expr.slice)
if sub_type is ast.Index:
if isinstance(expr.slice.value, ast.Tuple):
# N-dimensional indexing using Tuple: x[(i, j, k)] is equivalent to x[i, j, k]
# XXX: Indexing using a list is **different**! It triggers advanced indexing.
indices = [
build_expr(ctx, index_expr) for index_expr in expr.slice.value.elts
]
if not indices:
# `col_offset` is an int, but `end_col_offset` is
# `Optional[int]`. The magic number is here to make
# sure we can parse `()` on any machine
r = ctx.make_range(
expr.lineno,
expr.slice.value.col_offset,
expr.slice.value.col_offset + 2,
)
tup = TupleLiteral(r, [])
indices.append(tup)
return Subscript(base, indices)
else:
return Subscript(base, [build_expr(ctx, expr.slice.value)])
elif sub_type is ast.Slice:
return Subscript(base, [build_SliceExpr(ctx, base, expr.slice)])
elif sub_type is ast.ExtSlice:
return Subscript(base, build_ExtSlice(ctx, base, expr.slice))
elif sys.version_info >= (
3,
9,
): # In Python3.9 array indicies are not wrapped in ast.Index
if sub_type is ast.Tuple:
# N-dimensional indexing using Tuple: x[(i, j, k)] is equivalent to x[i, j, k]
indices = []
for index_expr in expr.slice.elts:
if isinstance(index_expr, ast.Slice):
indices.append(build_SliceExpr(ctx, base, index_expr))
else:
indices.append(build_expr(ctx, index_expr))
# Special-case logic for `typing.Tuple[()]`
if not indices:
# See note above r.e. magic number
r = ctx.make_range(
expr.lineno, expr.slice.col_offset, expr.slice.col_offset + 2
)
tup = TupleLiteral(r, [])
indices.append(tup)
return Subscript(base, indices)
return Subscript(base, [build_expr(ctx, expr.slice)])
else: # Ellipsis (can only happen in Python 2)
raise NotSupportedError(base.range(), "ellipsis is not supported")
@staticmethod
def build_List(ctx, expr):
return ListLiteral(
ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1),
[build_expr(ctx, e) for e in expr.elts],
)
@staticmethod
def build_Tuple(ctx, expr):
return TupleLiteral(
ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1),
[build_expr(ctx, e) for e in expr.elts],
)
@staticmethod
def build_Dict(ctx, expr):
range = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
if expr.keys and not expr.keys[0]:
raise NotSupportedError(
range, "Dict expansion (e.g. `{**dict}`) is not supported"
)
return DictLiteral(
range,
[build_expr(ctx, e) for e in expr.keys],
[build_expr(ctx, e) for e in expr.values],
)
@staticmethod
def build_Num(ctx, expr):
value = str(expr.value)
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(value))
return Const(r, value)
@staticmethod
def build_Constant(ctx, expr):
value = expr.value
if value is None or isinstance(value, bool):
# NB: this check has to happen before the int check because bool is
# a subclass of int
return ExprBuilder.build_NameConstant(ctx, expr)
if isinstance(value, (int, float, complex)):
return ExprBuilder.build_Num(ctx, expr)
elif isinstance(value, str):
return ExprBuilder.build_Str(ctx, expr)
elif isinstance(value, type(Ellipsis)):
return ExprBuilder.build_Ellipsis(ctx, expr)
else:
error_range = ctx.make_range(
expr.lineno, expr.col_offset, expr.col_offset + len(str(value))
)
raise FrontendError(error_range, "Unknown Constant expression type")
@staticmethod
def build_Str(ctx, expr):
value = str(expr.value)
r = ctx.make_range(
expr.lineno, expr.col_offset, expr.col_offset + len(value) + 1
)
return StringLiteral(r, value)
@staticmethod
def build_JoinedStr(ctx, expr):
s = ""
args = []
for value in expr.values:
r = ctx.make_range(value.lineno, value.col_offset, value.col_offset + 1)
if isinstance(value, ast.FormattedValue):
if value.conversion != -1:
raise NotSupportedError(r, "Don't support conversion in JoinedStr")
if value.format_spec is not None:
raise NotSupportedError(r, "Don't support formatting in JoinedStr")
s += "{}"
args.append(build_expr(ctx, value.value))
elif isinstance(value, ast.Str):
s += value.s
else:
raise NotSupportedError(r, "Unsupported value in JoinedStr")
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
return Apply(Select(StringLiteral(r, s), Ident(r, "format")), args, [])
@staticmethod
def build_ListComp(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset)
if len(stmt.generators) != 1:
raise NotSupportedError(r, "Only a single generator is currently supported")
if len(stmt.generators[0].ifs) != 0:
raise NotSupportedError(r, "Comprehension ifs are not supported yet")
elt_expr = build_expr(ctx, stmt.elt)
target_expr = build_expr(ctx, stmt.generators[0].target)
iter_expr = build_expr(ctx, stmt.generators[0].iter)
return ListComp(r, elt_expr, target_expr, iter_expr)
@staticmethod
def build_GeneratorExp(ctx, stmt):
# Convert Generator expression to ListComp
return ExprBuilder.build_ListComp(ctx, stmt)
@staticmethod
def build_DictComp(ctx, stmt):
r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset)
if len(stmt.generators) != 1:
raise NotSupportedError(r, "Only a single generator is currently supported")
if len(stmt.generators[0].ifs) != 0:
raise NotSupportedError(r, "Comprehension ifs are not supported yet")
key_expr = build_expr(ctx, stmt.key)
value_expr = build_expr(ctx, stmt.value)
target_expr = build_expr(ctx, stmt.generators[0].target)
iter_expr = build_expr(ctx, stmt.generators[0].iter)
return DictComp(r, key_expr, value_expr, target_expr, iter_expr)
@staticmethod
def build_Starred(ctx, expr):
r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
return Starred(r, build_expr(ctx, expr.value))
build_expr = ExprBuilder()
build_stmt = StmtBuilder()
build_withitem = WithItemBuilder()
def find_before(ctx, pos, substr, offsets=(0, 0)):
new_pos = ctx.source[:pos].rindex(substr)
return ctx.make_raw_range(new_pos + offsets[0], new_pos + len(substr) + offsets[1])