Spaces:
Running
Running
import torch | |
# Pack pairs of int4 values into int8, in row major order; first int4 | |
# value goes into lower order bits, and second int4 value into higher | |
# order bits of resulting int8 value. | |
def pack_int4_to_int8(weight): | |
assert weight.dim() == 2 | |
assert weight.shape[1] % 2 == 0 | |
assert weight.dtype == torch.int8 | |
return ((weight[:, 1::2] & 0xF) << 4) | (weight[:, 0::2] & 0xF) | |
# Unpack quandruples of bits in int8 values into int4 values, in row | |
# major order; lower 4 bits go into first int4 value goes, and upper 4 | |
# bits go into second int4 value. | |
def unpack_int8_to_int4(weight): | |
assert weight.dim() == 2 | |
assert weight.dtype == torch.int8 | |
return torch.stack((weight & 0xF, (weight >> 4) & 0xF), dim=2).view( | |
weight.shape[0], 2 * weight.shape[1] | |
) | |
# Transpose the weight matrix, and then reorder its elements according | |
# to underlying requirements of CUTLASS library, so that it could be | |
# used for CUTLASS-based mixed datatypes linear operation. | |
def quantized_weight_reorder_for_mixed_dtypes_linear_cutlass( | |
weight, dtypeq, transpose=False | |
): | |
assert weight.dim() == 2 | |
assert weight.dtype == torch.int8 | |
assert dtypeq == torch.int8 or dtypeq == torch.quint4x2 | |
assert weight.device.type == "cuda" | |
device = weight.device | |
# subbyte_transpose | |
if not transpose: | |
if dtypeq == torch.int8: | |
outp = weight.T | |
elif dtypeq == torch.quint4x2: | |
outp = pack_int4_to_int8(unpack_int8_to_int4(weight.view(torch.int8)).T) | |
else: | |
outp = weight | |
ncols, nrows = outp.shape # type: ignore[possibly-undefined] | |
assert nrows % (32 if dtypeq == torch.quint4x2 else 64) == 0 | |
assert ncols % 64 == 0 | |
# permute_B_rows_for_mixed_gemm | |
# (permute cols actually, as transpose is applied first here) | |
if dtypeq == torch.quint4x2: | |
cols_permuted = ( | |
torch.tensor( | |
[0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], | |
device=device, | |
) | |
+ (torch.arange(0, nrows // 16, device=device).reshape(-1, 1) * 16).expand( | |
nrows // 16, 16 | |
) | |
).view(-1) | |
else: | |
cols_permuted = ( | |
torch.tensor( | |
[0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15], | |
device=device, | |
) | |
+ (torch.arange(0, nrows // 16, device=device).reshape(-1, 1) * 16).expand( | |
nrows // 16, 16 | |
) | |
).view(-1) | |
outp = outp.index_copy(1, cols_permuted, outp) | |
# interleave_column_major_tensor | |
magic0 = 4 if dtypeq == torch.quint4x2 else 2 | |
magic1 = 32 // magic0 | |
tmp0 = ( | |
(torch.arange(0, ncols // magic0, device=device) * (nrows // 4 * magic0)) | |
.view(-1, 1) | |
.repeat(1, nrows // 4 * magic0) | |
.view(-1) | |
) | |
tmp1 = ( | |
(torch.arange(0, nrows // 4 // magic1, device=device) * (magic0 * magic1)) | |
.view(-1, 1) | |
.repeat(1, magic1) | |
.view(-1) | |
.repeat(ncols) | |
) | |
tmp2 = ( | |
(torch.arange(0, magic0, device=device) * magic1) | |
.view(-1, 1) | |
.repeat(1, nrows // 4) | |
.view(-1) | |
.repeat(ncols // magic0) | |
) | |
tmp3 = torch.arange(0, magic1, device=device).repeat(nrows // 4 * ncols // magic1) | |
outp_offsets = tmp0 + tmp1 + tmp2 + tmp3 | |
tmp = outp.view(-1).view(torch.int32) | |
outp = torch.zeros_like(tmp) | |
outp.scatter_(0, outp_offsets, tmp) | |
outp = outp.view(weight.dtype) | |
# add_bias_and_interleave_quantized_tensor_inplace | |
tmp = outp.view(-1) | |
outp = torch.empty_like(tmp) | |
if dtypeq == torch.int8: | |
tmp = (tmp.to(torch.int) + 128).to(tmp.dtype) | |
outp[0::4] = tmp[0::4] | |
outp[1::4] = tmp[2::4] | |
outp[2::4] = tmp[1::4] | |
outp[3::4] = tmp[3::4] | |
elif dtypeq == torch.quint4x2: | |
tmp0 = ((tmp & 0xF) + 8) & 0xF | |
tmp0 = (tmp0[1::2] << 4) | tmp0[0::2] | |
tmp1 = (((tmp >> 4) & 0xF) + 8) & 0xF | |
tmp1 = (tmp1[1::2] << 4) | tmp1[0::2] | |
outp[0::4] = tmp0[0::2] | |
outp[1::4] = tmp0[1::2] | |
outp[2::4] = tmp1[0::2] | |
outp[3::4] = tmp1[1::2] | |
if dtypeq == torch.quint4x2: | |
nrows *= 2 | |
ncols //= 2 | |
return outp.view(nrows, ncols).view(torch.uint8) | |