Spaces:
Running
Running
import random | |
from copy import copy | |
import pytest | |
import networkx as nx | |
from networkx.utils import ( | |
PythonRandomInterface, | |
arbitrary_element, | |
create_py_random_state, | |
create_random_state, | |
dict_to_numpy_array, | |
discrete_sequence, | |
flatten, | |
groups, | |
make_list_of_ints, | |
pairwise, | |
powerlaw_sequence, | |
) | |
from networkx.utils.misc import _dict_to_numpy_array1, _dict_to_numpy_array2 | |
nested_depth = ( | |
1, | |
2, | |
(3, 4, ((5, 6, (7,), (8, (9, 10), 11), (12, 13, (14, 15)), 16), 17), 18, 19), | |
20, | |
) | |
nested_set = { | |
(1, 2, 3, 4), | |
(5, 6, 7, 8, 9), | |
(10, 11, (12, 13, 14), (15, 16, 17, 18)), | |
19, | |
20, | |
} | |
nested_mixed = [ | |
1, | |
(2, 3, {4, (5, 6), 7}, [8, 9]), | |
{10: "foo", 11: "bar", (12, 13): "baz"}, | |
{(14, 15): "qwe", 16: "asd"}, | |
(17, (18, "19"), 20), | |
] | |
def test_flatten(nested, result): | |
if result is None: | |
val = flatten(nested, result) | |
assert len(val) == 20 | |
else: | |
_result = copy(result) # because pytest passes parameters as is | |
nexisting = len(_result) | |
val = flatten(nested, _result) | |
assert len(val) == len(_result) == 20 + nexisting | |
assert issubclass(type(val), tuple) | |
def test_make_list_of_ints(): | |
mylist = [1, 2, 3.0, 42, -2] | |
assert make_list_of_ints(mylist) is mylist | |
assert make_list_of_ints(mylist) == mylist | |
assert type(make_list_of_ints(mylist)[2]) is int | |
pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3, "kermit"]) | |
pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3.1]) | |
def test_random_number_distribution(): | |
# smoke test only | |
z = powerlaw_sequence(20, exponent=2.5) | |
z = discrete_sequence(20, distribution=[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3]) | |
class TestNumpyArray: | |
def setup_class(cls): | |
global np | |
np = pytest.importorskip("numpy") | |
def test_numpy_to_list_of_ints(self): | |
a = np.array([1, 2, 3], dtype=np.int64) | |
b = np.array([1.0, 2, 3]) | |
c = np.array([1.1, 2, 3]) | |
assert type(make_list_of_ints(a)) == list | |
assert make_list_of_ints(b) == list(b) | |
B = make_list_of_ints(b) | |
assert type(B[0]) == int | |
pytest.raises(nx.NetworkXError, make_list_of_ints, c) | |
def test__dict_to_numpy_array1(self): | |
d = {"a": 1, "b": 2} | |
a = _dict_to_numpy_array1(d, mapping={"a": 0, "b": 1}) | |
np.testing.assert_allclose(a, np.array([1, 2])) | |
a = _dict_to_numpy_array1(d, mapping={"b": 0, "a": 1}) | |
np.testing.assert_allclose(a, np.array([2, 1])) | |
a = _dict_to_numpy_array1(d) | |
np.testing.assert_allclose(a.sum(), 3) | |
def test__dict_to_numpy_array2(self): | |
d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}} | |
mapping = {"a": 1, "b": 0} | |
a = _dict_to_numpy_array2(d, mapping=mapping) | |
np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]])) | |
a = _dict_to_numpy_array2(d) | |
np.testing.assert_allclose(a.sum(), 33) | |
def test_dict_to_numpy_array_a(self): | |
d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}} | |
mapping = {"a": 0, "b": 1} | |
a = dict_to_numpy_array(d, mapping=mapping) | |
np.testing.assert_allclose(a, np.array([[1, 2], [10, 20]])) | |
mapping = {"a": 1, "b": 0} | |
a = dict_to_numpy_array(d, mapping=mapping) | |
np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]])) | |
a = _dict_to_numpy_array2(d) | |
np.testing.assert_allclose(a.sum(), 33) | |
def test_dict_to_numpy_array_b(self): | |
d = {"a": 1, "b": 2} | |
mapping = {"a": 0, "b": 1} | |
a = dict_to_numpy_array(d, mapping=mapping) | |
np.testing.assert_allclose(a, np.array([1, 2])) | |
a = _dict_to_numpy_array1(d) | |
np.testing.assert_allclose(a.sum(), 3) | |
def test_pairwise(): | |
nodes = range(4) | |
node_pairs = [(0, 1), (1, 2), (2, 3)] | |
node_pairs_cycle = node_pairs + [(3, 0)] | |
assert list(pairwise(nodes)) == node_pairs | |
assert list(pairwise(iter(nodes))) == node_pairs | |
assert list(pairwise(nodes, cyclic=True)) == node_pairs_cycle | |
empty_iter = iter(()) | |
assert list(pairwise(empty_iter)) == [] | |
empty_iter = iter(()) | |
assert list(pairwise(empty_iter, cyclic=True)) == [] | |
def test_groups(): | |
many_to_one = dict(zip("abcde", [0, 0, 1, 1, 2])) | |
actual = groups(many_to_one) | |
expected = {0: {"a", "b"}, 1: {"c", "d"}, 2: {"e"}} | |
assert actual == expected | |
assert {} == groups({}) | |
def test_create_random_state(): | |
np = pytest.importorskip("numpy") | |
rs = np.random.RandomState | |
assert isinstance(create_random_state(1), rs) | |
assert isinstance(create_random_state(None), rs) | |
assert isinstance(create_random_state(np.random), rs) | |
assert isinstance(create_random_state(rs(1)), rs) | |
# Support for numpy.random.Generator | |
rng = np.random.default_rng() | |
assert isinstance(create_random_state(rng), np.random.Generator) | |
pytest.raises(ValueError, create_random_state, "a") | |
assert np.all(rs(1).rand(10) == create_random_state(1).rand(10)) | |
def test_create_py_random_state(): | |
pyrs = random.Random | |
assert isinstance(create_py_random_state(1), pyrs) | |
assert isinstance(create_py_random_state(None), pyrs) | |
assert isinstance(create_py_random_state(pyrs(1)), pyrs) | |
pytest.raises(ValueError, create_py_random_state, "a") | |
np = pytest.importorskip("numpy") | |
rs = np.random.RandomState | |
rng = np.random.default_rng(1000) | |
rng_explicit = np.random.Generator(np.random.SFC64()) | |
nprs = PythonRandomInterface | |
assert isinstance(create_py_random_state(np.random), nprs) | |
assert isinstance(create_py_random_state(rs(1)), nprs) | |
assert isinstance(create_py_random_state(rng), nprs) | |
assert isinstance(create_py_random_state(rng_explicit), nprs) | |
# test default rng input | |
assert isinstance(PythonRandomInterface(), nprs) | |
def test_PythonRandomInterface_RandomState(): | |
np = pytest.importorskip("numpy") | |
rs = np.random.RandomState | |
rng = PythonRandomInterface(rs(42)) | |
rs42 = rs(42) | |
# make sure these functions are same as expected outcome | |
assert rng.randrange(3, 5) == rs42.randint(3, 5) | |
assert rng.choice([1, 2, 3]) == rs42.choice([1, 2, 3]) | |
assert rng.gauss(0, 1) == rs42.normal(0, 1) | |
assert rng.expovariate(1.5) == rs42.exponential(1 / 1.5) | |
assert np.all(rng.shuffle([1, 2, 3]) == rs42.shuffle([1, 2, 3])) | |
assert np.all( | |
rng.sample([1, 2, 3], 2) == rs42.choice([1, 2, 3], (2,), replace=False) | |
) | |
assert np.all( | |
[rng.randint(3, 5) for _ in range(100)] | |
== [rs42.randint(3, 6) for _ in range(100)] | |
) | |
assert rng.random() == rs42.random_sample() | |
def test_PythonRandomInterface_Generator(): | |
np = pytest.importorskip("numpy") | |
rng = np.random.default_rng(42) | |
pri = PythonRandomInterface(np.random.default_rng(42)) | |
# make sure these functions are same as expected outcome | |
assert pri.randrange(3, 5) == rng.integers(3, 5) | |
assert pri.choice([1, 2, 3]) == rng.choice([1, 2, 3]) | |
assert pri.gauss(0, 1) == rng.normal(0, 1) | |
assert pri.expovariate(1.5) == rng.exponential(1 / 1.5) | |
assert np.all(pri.shuffle([1, 2, 3]) == rng.shuffle([1, 2, 3])) | |
assert np.all( | |
pri.sample([1, 2, 3], 2) == rng.choice([1, 2, 3], (2,), replace=False) | |
) | |
assert np.all( | |
[pri.randint(3, 5) for _ in range(100)] | |
== [rng.integers(3, 6) for _ in range(100)] | |
) | |
assert pri.random() == rng.random() | |
def test_arbitrary_element(iterable_type, expected): | |
iterable = iterable_type([1, 2, 3]) | |
assert arbitrary_element(iterable) == expected | |
def test_arbitrary_element_raises(iterator): | |
"""Value error is raised when input is an iterator.""" | |
with pytest.raises(ValueError, match="from an iterator"): | |
arbitrary_element(iterator) | |