Spaces:
Sleeping
Sleeping
File size: 9,061 Bytes
98e2ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import torch
from os import path
from model.utils import action_sequences_to_clusters
from model.entity_ranking_model import EntityRankingModel
from inference.tokenize_doc import tokenize_and_segment_doc, basic_tokenize_doc
from omegaconf import OmegaConf, open_dict
from transformers import AutoModel, AutoTokenizer
import spacy
import json
import pytorch_utils.utils as utils
class Inference:
def __init__(self, model_path):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.best_model_path = path.join(model_path, "best/model.pth")
self._load_model()
self.max_segment_len = self.config.model.doc_encoder.transformer.max_segment_len
self.tokenizer = self.model.mention_proposer.doc_encoder.tokenizer
def find_repr_and_clean(self, basic_tokenized_doc):
## Find marked representatives
num_brackets = 0
start_tok = 0
tokens_new = [] ## Contains {{ and }}
tokens_proc = [] ## Does not contain {{ and }}
basic_tokenized_doc_proc = [] ## Does not contain {{ and }}
skip_next = 0
for sentence in basic_tokenized_doc:
tokens_sent = []
for token_ind, token in enumerate(sentence):
if skip_next:
skip_next = 0
continue
if token_ind + 1 < len(sentence):
if token == "{" and sentence[token_ind + 1] == "{":
tokens_new.append("{{")
skip_next = 1
elif token == "}" and sentence[token_ind + 1] == "}":
tokens_new.append("}}")
skip_next = 1
else:
tokens_new.append(token)
tokens_sent.append(token)
else:
tokens_new.append(token)
tokens_sent.append(token)
basic_tokenized_doc_proc.append(tokens_sent)
tokens_proc.extend(tokens_sent)
active_ent_toks = []
ent_toks = []
for word_ind, word in enumerate(tokens_new):
if word == "{{":
num_brackets += 1
start_tok += 1
elif word == "}}":
num_brackets += 1
active_ent_toks[-1].append(
word_ind - num_brackets
) ## Since we included the current bracket upfront
new_entity = active_ent_toks.pop()
ent_toks.append(new_entity)
else:
while start_tok > 0:
active_ent_toks.append([word_ind - num_brackets])
start_tok -= 1
ent_names = []
for ent in ent_toks:
ent_names.append(" ".join(tokens_proc[ent[0] : ent[1] + 1]))
print("Entities: ", ent_toks)
print("Entity Names: ", ent_names)
return basic_tokenized_doc_proc, ent_toks, ent_names
def get_ts_from_st(self, subtoken_map, representatives):
ts_map = {}
for subtoken_ind, token_ind in enumerate(subtoken_map):
if token_ind not in ts_map:
ts_map[token_ind] = [subtoken_ind]
if subtoken_ind != 0:
ts_map[token_ind - 1].append(subtoken_ind - 1)
ent_toks_st = []
for entity in representatives:
start_st = ts_map[entity[0]][0]
end_st = ts_map[entity[1]][-1]
ent_toks_st.append((start_st, end_st))
return ent_toks_st, ts_map
def process_doc_str(self, document):
# Raw document string. First perform basic tokenization before further tokenization.
basic_tokenizer = spacy.load("en_core_web_trf")
basic_tokenized_doc = basic_tokenize_doc(document, basic_tokenizer)
basic_tokenized_doc, representatives, representatives_names = (
self.find_repr_and_clean(basic_tokenized_doc)
)
tokenized_doc = tokenize_and_segment_doc(
basic_tokenized_doc,
self.tokenizer,
max_segment_len=self.max_segment_len,
)
representatives, representatives_names = zip(
*sorted(zip(representatives, representatives_names))
)
print("Representatives: ", representatives)
print("Representative Names: ", representatives_names)
ent_toks_st, ts_map = self.get_ts_from_st(
tokenized_doc["subtoken_map"], representatives
)
return (
basic_tokenized_doc,
tokenized_doc,
representatives,
representatives_names,
ent_toks_st,
ts_map,
)
def _load_model(self):
checkpoint = torch.load(self.best_model_path, map_location="cpu")
self.config = checkpoint["config"]
self.train_info = checkpoint["train_info"]
if self.config.model.doc_encoder.finetune:
# Load the document encoder params if encoder is finetuned
doc_encoder_dir = path.join(
path.dirname(self.best_model_path),
self.config.paths.doc_encoder_dirname,
)
if path.exists(doc_encoder_dir):
self.config.model.doc_encoder.transformer.model_str = doc_encoder_dir
self.config.model.memory.thresh = 0.5
self.model = EntityRankingModel(self.config.model, self.config.trainer)
# Document encoder parameters will be loaded via the huggingface initialization
self.model.load_state_dict(checkpoint["model"], strict=False)
if torch.cuda.is_available():
self.model.cuda(device=self.config.device)
self.model.eval()
@torch.no_grad()
def perform_coreference(self, document, doc_name):
if isinstance(document, str):
(
basic_tokenized_doc,
tokenized_doc,
ent_toks,
ent_names,
ent_toks_st,
ts_map,
) = self.process_doc_str(document)
tokenized_doc["representatives"] = ent_toks_st
tokenized_doc["doc_key"] = doc_name
tokenized_doc["clusters"] = []
else:
raise ValueError
(
pred_mentions,
pred_mention_emb_list,
mention_scores,
gt_actions,
pred_actions,
coref_scores_doc,
entity_cluster_states,
link_time,
) = self.model(tokenized_doc)
idx_clusters = action_sequences_to_clusters(
pred_actions, pred_mentions, len(ent_toks_st)
)
subtoken_map = tokenized_doc["subtoken_map"]
orig_tokens = tokenized_doc["orig_tokens"]
clusters = []
for idx_cluster in idx_clusters:
cur_cluster = []
for ment_start, ment_end in idx_cluster:
cur_cluster.append(
(
(subtoken_map[ment_start], subtoken_map[ment_end]),
" ".join(
orig_tokens[
subtoken_map[ment_start] : subtoken_map[ment_end] + 1
]
),
)
)
clusters.append(cur_cluster)
keys_tokenized_doc = list(tokenized_doc.keys())
for key in keys_tokenized_doc:
if type(tokenized_doc[key]) == torch.Tensor:
del tokenized_doc[key]
tokenized_doc["tensorized_sent"] = [
sent.tolist() for sent in tokenized_doc["tensorized_sent"]
]
return {
"tokenized_doc": tokenized_doc["orig_tokens"],
"clusters": clusters,
# "subtoken_idx_clusters": idx_clusters,
# "actions": pred_actions,
# "mentions": pred_mentions,
# "representative_embs": entity_cluster_states["mem"],
"representative_names": ent_names,
}
if __name__ == "__main__":
## Arg Parser
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, help="Specify model path")
parser.add_argument("-d", "--doc", type=str, help="Specify document path")
parser.add_argument(
"-g", "--gpu", type=str, default="cuda:0", help="Specify GPU device"
)
parser.add_argument(
"--doc_name", type=str, default="eval_doc", help="Specify encoder name"
)
parser.add_argument("-r", "--results", type=str, help="Specify results path")
args = parser.parse_args()
model_str = args.model
doc_str = args.doc
model = Inference(model_str)
doc_str = open(doc_str).read()
output_dict = model.perform_coreference(doc_str, args.doc_name)
print("Keys: ", output_dict.keys())
# for cluster_ind, cluster in enumerate(output_dict["clusters"]):
# print(f"{cluster_ind}:", cluster)
with open(args.results, "w") as f:
json.dump(output_dict, f)
|