MEIRa / model /mention_proposal /mention_proposal_module.py
KawshikManikantan's picture
upload_trial
98e2ea5
raw
history blame
16.5 kB
import torch
import torch.nn as nn
from model.document_encoder import IndependentDocEncoder
from pytorch_utils.modules import MLP
import torch.nn.functional as F
from model.mention_proposal.utils import sort_mentions
from typing import List, Dict, Tuple
from torch import Tensor
class MentionProposalModule(nn.Module):
"""Module to propose candidate mention spans.
This module performs the first two steps of the coreference pipeline.
(1) Encode Document
(2) Score candidate spans and filter through the high-scoring ones.
"""
def __init__(self, config, train_config, drop_module=None):
super(MentionProposalModule, self).__init__()
self.config = config
self.train_config = train_config
self.drop_module = drop_module
# Encoder
self.doc_encoder = IndependentDocEncoder(config.doc_encoder)
self._build_model(hidden_size=self.doc_encoder.hidden_size)
self.loss_fn = nn.BCEWithLogitsLoss(reduction="sum")
@property
def device(self) -> torch.device:
return next(self.doc_encoder.parameters()).device
def _build_model(self, hidden_size: int) -> None:
mention_params = self.config.mention_params
self.span_width_embeddings = nn.Embedding(
mention_params.max_span_width, mention_params.emb_size
)
self.span_width_prior_embeddings = nn.Embedding(
mention_params.max_span_width, mention_params.emb_size
)
ment_emb_type = mention_params.ment_emb
ment_emb_to_size_factor = mention_params.ment_emb_to_size_factor[ment_emb_type]
if ment_emb_type == "attn":
self.mention_attn = nn.Linear(hidden_size, 1).to(self.device)
self.span_emb_size = (
ment_emb_to_size_factor * hidden_size + mention_params.emb_size
)
self.mention_mlp = MLP(
input_size=self.span_emb_size,
hidden_size=mention_params.mlp_size,
output_size=1,
bias=True,
drop_module=self.drop_module,
num_hidden_layers=mention_params.mlp_depth,
)
self.span_width_mlp = MLP(
input_size=mention_params.emb_size,
hidden_size=mention_params.mlp_size,
output_size=1,
num_hidden_layers=mention_params.mlp_depth,
bias=True,
drop_module=self.drop_module,
)
def get_span_embeddings(
self, encoded_doc: Tensor, ment_starts: Tensor, ment_ends: Tensor
) -> Tensor:
"""Span embedding for the candidate mentions given the end points.
Args:
encoded_doc (Tensor): T x d where T is the number of tokens
ment_starts (Tensor): C where C is the number of candidate spans proposed.
Represents the starting token idx of proposed mentions.
ment_ends (Tensor): The endpoint equivalent of ment_starts
Returns:
span_embs (Tensor): C x d' where d represents the span embedding dimensionality.
where d' is typically a multiple of d + some constant (width emebddding).
"""
span_emb_list = [encoded_doc[ment_starts, :], encoded_doc[ment_ends, :]]
# Add span width embeddings
span_width_indices = torch.clamp(
ment_ends - ment_starts, max=self.config.mention_params.max_span_width - 1
)
span_width_embs = self.drop_module(
self.span_width_embeddings(span_width_indices)
)
span_emb_list.append(span_width_embs)
if self.config.mention_params.ment_emb == "attn":
num_words = encoded_doc.shape[0] # num_tokens (T)
num_c = ment_starts.shape[0] # num_candidates (C)
doc_range = torch.unsqueeze(
torch.arange(num_words, device=self.device), 0
).repeat(
num_c, 1
) # [C x T]
ment_masks = (doc_range >= torch.unsqueeze(ment_starts, dim=1)) & (
doc_range <= torch.unsqueeze(ment_ends, dim=1)
) # [C x T]
word_attn = torch.squeeze(self.mention_attn(encoded_doc), dim=1) # [T]
mention_word_attn = nn.functional.softmax(
(1 - ment_masks.float()) * (-1e10) + torch.unsqueeze(word_attn, dim=0),
dim=1,
) # [C x T]
attention_term = torch.matmul(mention_word_attn, encoded_doc) # K x H
span_emb_list.append(attention_term)
span_embs = torch.cat(span_emb_list, dim=1)
return span_embs
def get_mention_width_scores(
self, cand_starts: Tensor, cand_ends: Tensor
) -> Tensor:
"""Scores for candidate mention based solely on their length.
This prior score is necessary because most mention spans tend to be shorter in width.
"""
span_width_idx = torch.clamp(
cand_ends - cand_starts, max=self.config.mention_params.max_span_width - 1
)
span_width_embs = self.span_width_prior_embeddings(span_width_idx)
width_scores = torch.squeeze(self.span_width_mlp(span_width_embs), dim=-1)
return width_scores
def get_flat_gold_mentions(
self, clusters: List, num_tokens: int, flat_cand_mask: Tensor
) -> Tensor:
"""Represent the gold mentions in a binary flattened tensor.
This flat representation of gold mentions is useful for calculating the mention prediction
loss. Note that we filter out gold mentions longer than the max_span_width.
"""
gold_ments = torch.zeros(
num_tokens, self.config.mention_params.max_span_width, device=self.device
)
for cluster in clusters:
for mention in cluster:
span_start, span_end = mention[:2]
span_width = span_end - span_start + 1
if span_width <= self.config.mention_params.max_span_width:
span_width_idx = span_width - 1
gold_ments[span_start, span_width_idx] = 1
filt_gold_ments = gold_ments.reshape(-1)[flat_cand_mask].float()
return filt_gold_ments
def get_candidate_endpoints(
self, encoded_doc: Tensor, document: Dict
) -> Tuple[Tensor, Tensor, Tensor]:
"""Propose the candidate endpoints given the max span width constraints.
This method proposes the candidate spans while filtering out spans that cross
sentence boundaries. This method could also use a constraint on not starting
or ending in the middle of a word.
"""
num_words: int = encoded_doc.shape[0]
sent_map: Tensor = document["sentence_map"].to(self.device)
# num_words x max_span_width
cand_starts = torch.unsqueeze(
torch.arange(num_words, device=self.device), dim=1
).repeat(1, self.config.mention_params.max_span_width)
cand_ends = cand_starts + torch.unsqueeze(
torch.arange(self.config.mention_params.max_span_width, device=self.device),
dim=0,
)
cand_start_sent_indices: Tensor = sent_map[cand_starts]
# Avoid getting sentence indices for cand_ends >= num_words
corr_cand_ends: Tensor = torch.min(
cand_ends, torch.ones_like(cand_ends, device=self.device) * (num_words - 1)
)
cand_end_sent_indices: Tensor = sent_map[corr_cand_ends]
# End before document ends & same sentence
constraint1: Tensor = cand_ends < num_words
constraint2: Tensor = cand_start_sent_indices == cand_end_sent_indices
# Follows word_boundary
# Padding the subtoken_map because it will be useful for end of span check.
subtoken_map: Tensor = torch.tensor(
document["subtoken_map"]
+ [-1] * (self.config.mention_params.max_span_width + 1),
device=self.device,
)
# Check that the word corresponding to the previous subword is not the same at span start
constraint3 = subtoken_map[cand_starts] != subtoken_map[cand_starts - 1]
# Check that the word corresponding to the next subword is not the same at span end
constraint4 = subtoken_map[cand_ends] != subtoken_map[cand_ends + 1]
cand_mask: Tensor = constraint1 & constraint2 & constraint3 & constraint4
flat_cand_mask = cand_mask.reshape(-1)
# Filter and flatten the candidate end points
filt_cand_starts = cand_starts.reshape(-1)[flat_cand_mask] # (num_candidates,)
filt_cand_ends = cand_ends.reshape(-1)[flat_cand_mask] # (num_candidates,)
return filt_cand_starts, filt_cand_ends, flat_cand_mask
def pred_mentions(
self, document: Dict, encoded_doc: Tensor, eval_loss=False, ment_threshold=0.0
) -> Dict:
"""
Predict mentions for the encoded document.
Args:
document: Dictionary with the processed document attributes
encoded_doc: Encoded document outputted by the document encoder.
ment_threshold: Score threshold beyond which mention spans are filtered through.
Returns:
output_dict: Output dictionary with endpoints of proposed mentions, scores, and loss.
"""
mention_params = self.config.mention_params
num_tokens = encoded_doc.shape[0]
num_words = document["subtoken_map"][-1] - document["subtoken_map"][0] + 1
cand_starts, cand_ends, cand_mask = self.get_candidate_endpoints(
encoded_doc, document
)
span_embs = self.get_span_embeddings(encoded_doc, cand_starts, cand_ends)
mention_logits = torch.squeeze(self.mention_mlp(span_embs), dim=-1)
mention_logits += self.get_mention_width_scores(cand_starts, cand_ends)
del span_embs # Span embeddings not required anymore
output_dict = {}
if self.training or eval_loss:
k = int(mention_params.top_span_ratio * num_words)
topk_indices = torch.topk(mention_logits, k)[1]
filt_gold_mentions = self.get_flat_gold_mentions(
document["clusters"], num_tokens, cand_mask
)
if self.train_config.ment_loss_mode == "all":
mention_loss = self.loss_fn(mention_logits, filt_gold_mentions)
else:
mention_loss = self.loss_fn(
mention_logits[topk_indices], filt_gold_mentions[topk_indices]
)
if not mention_params.use_topk:
mentions_proposed = mention_logits >= ment_threshold
# Calculate accuracy
correct = (mentions_proposed == filt_gold_mentions).sum().item()
total = filt_gold_mentions.size(0)
# Calculate true positives, predicted positives, and precision
true_positives = (
((mentions_proposed == 1) & (filt_gold_mentions == 1)).sum().item()
)
predicted_positives = (mentions_proposed == 1).sum().item()
# Calculate true positives, actual positives, and recall
actual_positives = (filt_gold_mentions == 1).sum().item()
output_dict["ment_correct"] = correct
output_dict["ment_total"] = total
output_dict["ment_tp"] = true_positives
output_dict["ment_pp"] = predicted_positives
output_dict["ment_ap"] = actual_positives
# Add mention loss to output
output_dict["ment_loss"] = mention_loss
ignore_non_gold = mention_params.get("ignore_non_gold", True)
if not mention_params.use_topk and ignore_non_gold:
# Ignore invalid mentions even during training
topk_indices = topk_indices[
torch.nonzero(filt_gold_mentions[topk_indices], as_tuple=True)[0]
]
elif not ignore_non_gold:
# print("Not ignoring non-gold mentions. Adding an additional 'check'. If an invalid mention it should be mapped to others")
topk_indices = torch.squeeze(
(mention_logits >= ment_threshold).nonzero(as_tuple=False), dim=1
)
else:
if mention_params.use_topk:
k = int(mention_params.top_span_ratio * num_words)
topk_indices = torch.topk(mention_logits, k)[1]
else:
topk_indices = torch.squeeze(
(mention_logits >= ment_threshold).nonzero(as_tuple=False), dim=1
)
topk_starts = cand_starts[topk_indices]
topk_ends = cand_ends[topk_indices]
topk_scores = mention_logits[topk_indices]
(
output_dict["ment_starts"],
output_dict["ment_ends"],
sorted_indices,
) = sort_mentions(topk_starts, topk_ends, return_sorted_indices=True)
output_dict["ment_scores"] = topk_scores[sorted_indices]
return output_dict
def transform_gold_mentions(self, document: Dict) -> Dict:
"""Transform gold mentions to a format similar to predicted mentions.
This method is useful for running ablation experiments where we experiment
with using the gold mentions i.e. skipping any errors of the mention proposal module.
"""
mentions = []
# print(document)
for cluster in document["clusters"]:
for ment_start, ment_end in cluster:
mentions.append((ment_start, ment_end))
if len(mentions):
topk_starts, topk_ends = zip(*mentions)
else:
raise ValueError
topk_starts = torch.tensor(topk_starts, device=self.device)
topk_ends = torch.tensor(topk_ends, device=self.device)
topk_starts, topk_ends = sort_mentions(topk_starts, topk_ends)
output_dict = {
"ment_starts": topk_starts,
"ment_ends": topk_ends,
# Fake mention score
"ment_scores": torch.tensor([1.0] * len(mentions), device=self.device),
}
return output_dict
def get_specific_reps(self, document: Dict) -> List:
pass
def forward(self, document: Dict, eval_loss=False, gold_mentions=False) -> Dict:
"""Given the document return proposed mentions and their embeddings."""
encoded_doc: Tensor = self.doc_encoder(document) # .float() LLAMA
if self.config.mention_params.use_gold_ments or gold_mentions:
# Process gold mentions to a format similar to mentions obtained after prediction
output_dict: Dict = self.transform_gold_mentions(document)
else:
if len(document.get("ext_predicted_mentions", [])) != 0:
output_dict = {}
ment_starts, ment_ends = zip(*document["ext_predicted_mentions"])
output_dict["ment_starts"] = torch.tensor(
ment_starts, device=self.device
)
output_dict["ment_ends"] = torch.tensor(ment_ends, device=self.device)
output_dict["ment_scores"] = torch.tensor(
[1.0] * len(ment_starts), device=self.device
)
else:
# print("Predicting mentions")
output_dict = self.pred_mentions(document, encoded_doc, eval_loss)
pred_starts: Tensor = output_dict["ment_starts"]
pred_ends: Tensor = output_dict["ment_ends"]
# Stack the starts and ends to get the mention tuple
output_dict["ments"] = torch.stack((pred_starts, pred_ends), dim=1)
# Get mention embeddings
mention_embs: Tensor = self.get_span_embeddings(
encoded_doc, pred_starts, pred_ends
)
## Representative Processing Code
if document["representatives"]:
rep_start, rep_end = zip(*document["representatives"])
rep_embs = self.get_span_embeddings(
encoded_doc,
torch.tensor(rep_start, device=self.device),
torch.tensor(rep_end, device=self.device),
)
output_dict["rep_emb_list"] = torch.unbind(rep_embs, dim=0)
else:
output_dict["rep_emb_list"] = ()
output_dict["ment_emb_list"] = torch.unbind(mention_embs, dim=0)
return output_dict