Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
import torch | |
class LabelSmoothingLoss(nn.Module): | |
def __init__(self, smoothing=0.0, dim=-1): | |
super(LabelSmoothingLoss, self).__init__() | |
self.confidence = 1.0 - smoothing | |
self.smoothing = smoothing | |
self.dim = dim | |
def forward(self, pred, target, weight=None): | |
pred = pred.log_softmax(dim=self.dim) | |
with torch.no_grad(): | |
true_dist = torch.zeros_like(pred) | |
true_dist.fill_(self.smoothing / (pred.shape[self.dim] - 1)) | |
true_dist.scatter_(self.dim, target, self.confidence) | |
if weight is None: | |
loss = torch.mean(torch.sum(-true_dist * pred, dim=self.dim)) | |
else: | |
loss = torch.sum(-true_dist * pred * weight, dim=self.dim) / torch.sum( | |
weight | |
) | |
return loss | |