counterfactuals-demo / datasets.py
fabio-deep
added links
146a6ea
raw
history blame
13.3 kB
import os
import gzip
import struct
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as TF
import torch.nn.functional as F
from tqdm import tqdm
from torch.utils.data import Dataset
from typing import Tuple
from PIL import Image
from skimage.io import imread
def log_standardize(x):
log_x = torch.log(x.clamp(min=1e-12))
return (log_x - log_x.mean()) / log_x.std().clamp(min=1e-12) # mean=0, std=1
def normalize(x, x_min=None, x_max=None, zero_one=False):
if x_min is None:
x_min = x.min()
if x_max is None:
x_max = x.max()
print(f"max: {x_max}, min: {x_min}")
x = (x - x_min) / (x_max - x_min) # [0,1]
return x if zero_one else 2 * x - 1 # else [-1,1]
class UKBBDataset(Dataset):
def __init__(
self, root, csv_file, transform=None, columns=None, norm=None, concat_pa=True
):
super().__init__()
self.root = root
self.transform = transform
self.concat_pa = concat_pa # return concatenated parents
print(f"\nLoading csv data: {csv_file}")
self.df = pd.read_csv(csv_file)
self.columns = columns
if self.columns is None:
# ['eid', 'sex', 'age', 'brain_volume', 'ventricle_volume', 'mri_seq']
self.columns = list(self.df.columns) # return all
self.columns.pop(0) # remove redundant 'index' column
print(f"columns: {self.columns}")
self.samples = {i: torch.as_tensor(self.df[i]).float() for i in self.columns}
for k in ["age", "brain_volume", "ventricle_volume"]:
print(f"{k} normalization: {norm}")
if k in self.columns:
if norm == "[-1,1]":
self.samples[k] = normalize(self.samples[k])
elif norm == "[0,1]":
self.samples[k] = normalize(self.samples[k], zero_one=True)
elif norm == "log_standard":
self.samples[k] = log_standardize(self.samples[k])
elif norm == None:
pass
else:
NotImplementedError(f"{norm} not implemented.")
print(f"#samples: {len(self.df)}")
self.return_x = True if "eid" in self.columns else False
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
sample = {k: v[idx] for k, v in self.samples.items()}
if self.return_x:
mri_seq = "T1" if sample["mri_seq"] == 0.0 else "T2_FLAIR"
# Load scan
filename = (
f'{int(sample["eid"])}_' + mri_seq + "_unbiased_brain_rigid_to_mni.png"
)
x = Image.open(os.path.join(self.root, "thumbs_192x192", filename))
if self.transform is not None:
sample["x"] = self.transform(x)
sample.pop("eid", None)
if self.concat_pa:
sample["pa"] = torch.cat(
[torch.tensor([sample[k]]) for k in self.columns if k != "eid"], dim=0
)
return sample
def get_attr_max_min(attr):
# some ukbb dataset (max, min) stats
if attr == "age":
return 73, 44
elif attr == "brain_volume":
return 1629520, 841919
elif attr == "ventricle_volume":
return 157075, 7613.27001953125
else:
NotImplementedError
def ukbb(args):
csv_dir = args.data_dir
augmentation = {
"train": TF.Compose(
[
TF.Resize((args.input_res, args.input_res), antialias=None),
TF.RandomCrop(
size=(args.input_res, args.input_res),
padding=[2 * args.pad, args.pad],
),
TF.RandomHorizontalFlip(p=args.hflip),
TF.PILToTensor(),
]
),
"eval": TF.Compose(
[
TF.Resize((args.input_res, args.input_res), antialias=None),
TF.PILToTensor(),
]
),
}
datasets = {}
# for split in ['train', 'valid', 'test']:
for split in ["test"]:
datasets[split] = UKBBDataset(
root=args.data_dir,
csv_file=os.path.join(csv_dir, split + ".csv"),
transform=augmentation[("eval" if split != "train" else split)],
columns=(None if not args.parents_x else ["eid"] + args.parents_x),
norm=(None if not hasattr(args, "context_norm") else args.context_norm),
concat_pa=False,
)
return datasets
def _load_uint8(f):
idx_dtype, ndim = struct.unpack("BBBB", f.read(4))[2:]
shape = struct.unpack(">" + "I" * ndim, f.read(4 * ndim))
buffer_length = int(np.prod(shape))
data = np.frombuffer(f.read(buffer_length), dtype=np.uint8).reshape(shape)
return data
def load_idx(path: str) -> np.ndarray:
"""Reads an array in IDX format from disk.
Parameters
----------
path : str
Path of the input file. Will uncompress with `gzip` if path ends in '.gz'.
Returns
-------
np.ndarray
Output array of dtype ``uint8``.
References
----------
http://yann.lecun.com/exdb/mnist/
"""
open_fcn = gzip.open if path.endswith(".gz") else open
with open_fcn(path, "rb") as f:
return _load_uint8(f)
def _get_paths(root_dir, train):
prefix = "train" if train else "t10k"
images_filename = prefix + "-images-idx3-ubyte.gz"
labels_filename = prefix + "-labels-idx1-ubyte.gz"
metrics_filename = prefix + "-morpho.csv"
images_path = os.path.join(root_dir, images_filename)
labels_path = os.path.join(root_dir, labels_filename)
metrics_path = os.path.join(root_dir, metrics_filename)
return images_path, labels_path, metrics_path
def load_morphomnist_like(
root_dir, train: bool = True, columns=None
) -> Tuple[np.ndarray, np.ndarray, pd.DataFrame]:
"""
Args:
root_dir: path to data directory
train: whether to load the training subset (``True``, ``'train-*'`` files) or the test
subset (``False``, ``'t10k-*'`` files)
columns: list of morphometrics to load; by default (``None``) loads the image index and
all available metrics: area, length, thickness, slant, width, and height
Returns:
images, labels, metrics
"""
images_path, labels_path, metrics_path = _get_paths(root_dir, train)
images = load_idx(images_path)
labels = load_idx(labels_path)
if columns is not None and "index" not in columns:
usecols = ["index"] + list(columns)
else:
usecols = columns
metrics = pd.read_csv(metrics_path, usecols=usecols, index_col="index")
return images, labels, metrics
class MorphoMNIST(Dataset):
def __init__(
self,
root_dir,
train=True,
transform=None,
columns=None,
norm=None,
concat_pa=True,
):
self.train = train
self.transform = transform
self.columns = columns
self.concat_pa = concat_pa
self.norm = norm
cols_not_digit = [c for c in self.columns if c != "digit"]
images, labels, metrics_df = load_morphomnist_like(
root_dir, train, cols_not_digit
)
self.images = torch.from_numpy(np.array(images)).unsqueeze(1)
self.labels = F.one_hot(
torch.from_numpy(np.array(labels)).long(), num_classes=10
)
if self.columns is None:
self.columns = metrics_df.columns
self.samples = {k: torch.tensor(metrics_df[k]) for k in cols_not_digit}
self.min_max = {
"thickness": [0.87598526, 6.255515],
"intensity": [66.601204, 254.90317],
}
for k, v in self.samples.items(): # optional preprocessing
print(f"{k} normalization: {norm}")
if norm == "[-1,1]":
self.samples[k] = normalize(
v, x_min=self.min_max[k][0], x_max=self.min_max[k][1]
)
elif norm == "[0,1]":
self.samples[k] = normalize(
v, x_min=self.min_max[k][0], x_max=self.min_max[k][1], zero_one=True
)
elif norm == None:
pass
else:
NotImplementedError(f"{norm} not implemented.")
print(f"#samples: {len(metrics_df)}\n")
self.samples.update({"digit": self.labels})
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
sample = {}
sample["x"] = self.images[idx]
if self.transform is not None:
sample["x"] = self.transform(sample["x"])
if self.concat_pa:
sample["pa"] = torch.cat(
[
v[idx] if k == "digit" else torch.tensor([v[idx]])
for k, v in self.samples.items()
],
dim=0,
)
else:
sample.update({k: v[idx] for k, v in self.samples.items()})
return sample
def morphomnist(args):
# Load data
augmentation = {
"train": TF.Compose(
[
TF.RandomCrop((args.input_res, args.input_res), padding=args.pad),
]
),
"eval": TF.Compose(
[
TF.Pad(padding=2), # (32, 32)
]
),
}
datasets = {}
# for split in ['train', 'valid', 'test']:
for split in ["test"]:
datasets[split] = MorphoMNIST(
root_dir=args.data_dir,
train=(split == "train"), # test set is valid set
transform=augmentation[("eval" if split != "train" else split)],
columns=args.parents_x,
norm=args.context_norm,
concat_pa=False,
)
return datasets
def preproc_mimic(batch):
for k, v in batch.items():
if k == "x":
batch["x"] = (batch["x"].float() - 127.5) / 127.5 # [-1,1]
elif k in ["age"]:
batch[k] = batch[k].float().unsqueeze(-1)
batch[k] = batch[k] / 100.0
batch[k] = batch[k] * 2 - 1 # [-1,1]
elif k in ["race"]:
batch[k] = F.one_hot(batch[k], num_classes=3).squeeze().float()
elif k in ["finding"]:
batch[k] = batch[k].unsqueeze(-1).float()
else:
batch[k] = batch[k].float().unsqueeze(-1)
return batch
class MIMICDataset(Dataset):
def __init__(
self,
root,
csv_file,
transform=None,
columns=None,
concat_pa=True,
only_pleural_eff=True,
):
self.data = pd.read_csv(csv_file)
self.transform = transform
self.disease_labels = [
"No Finding",
"Other",
"Pleural Effusion",
# "Lung Opacity",
]
self.samples = {
"age": [],
"sex": [],
"finding": [],
"x": [],
"race": [],
# "lung_opacity": [],
# "pleural_effusion": [],
}
for idx, _ in enumerate(tqdm(range(len(self.data)), desc="Loading MIMIC Data")):
if only_pleural_eff and self.data.loc[idx, "disease"] == "Other":
continue
img_path = os.path.join(root, self.data.loc[idx, "path_preproc"])
# lung_opacity = self.data.loc[idx, "Lung Opacity"]
# self.samples["lung_opacity"].append(lung_opacity)
# pleural_effusion = self.data.loc[idx, "Pleural Effusion"]
# self.samples["pleural_effusion"].append(pleural_effusion)
disease = self.data.loc[idx, "disease"]
finding = 0 if disease == "No Finding" else 1
self.samples["x"].append(img_path)
self.samples["finding"].append(finding)
self.samples["age"].append(self.data.loc[idx, "age"])
self.samples["race"].append(self.data.loc[idx, "race_label"])
self.samples["sex"].append(self.data.loc[idx, "sex_label"])
self.columns = columns
if self.columns is None:
# ['age', 'race', 'sex']
self.columns = list(self.data.columns) # return all
self.columns.pop(0) # remove redundant 'index' column
self.concat_pa = concat_pa
def __len__(self):
return len(self.samples["x"])
def __getitem__(self, idx):
sample = {k: v[idx] for k, v in self.samples.items()}
sample["x"] = imread(sample["x"]).astype(np.float32)[None, ...]
for k, v in sample.items():
sample[k] = torch.tensor(v)
if self.transform:
sample["x"] = self.transform(sample["x"])
sample = preproc_mimic(sample)
if self.concat_pa:
sample["pa"] = torch.cat([sample[k] for k in self.columns], dim=0)
return sample
def mimic(args):
args.csv_dir = args.data_dir
datasets = {}
datasets["test"] = MIMICDataset(
root=args.data_dir,
csv_file=os.path.join(args.csv_dir, "mimic.sample.test.csv"),
columns=args.parents_x,
transform=TF.Compose(
[
TF.Resize((args.input_res, args.input_res), antialias=None),
]
),
concat_pa=False,
)
return datasets