File size: 13,615 Bytes
065b6ad d9fa664 065b6ad d9fa664 065b6ad d8688d6 065b6ad 97177b4 065b6ad fb0021f 065b6ad d9fa664 065b6ad d9fa664 065b6ad d9fa664 065b6ad d9fa664 065b6ad d9fa664 065b6ad d9fa664 065b6ad d9fa664 065b6ad d9fa664 065b6ad a5a544f 065b6ad 5631337 065b6ad d8688d6 d9fa664 065b6ad c575567 d9fa664 065b6ad c575567 065b6ad d9fa664 065b6ad d9fa664 065b6ad c575567 065b6ad d9fa664 065b6ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import gradio as gr
import tempfile
import os
import fitz # PyMuPDF
import uuid
import shutil
from pymilvus import MilvusClient
from middleware import Middleware
from rag import Rag
from pathlib import Path
import subprocess
import getpass
# importing necessary functions from dotenv library
from dotenv import load_dotenv, dotenv_values
import dotenv
import platform
import time
# loading variables from .env file
dotenv_file = dotenv.find_dotenv()
dotenv.load_dotenv(dotenv_file)
#kickstart docker and ollama servers
rag = Rag()
def generate_uuid(state):
# Check if UUID already exists in session state
if state["user_uuid"] is None:
# Generate a new UUID if not already set
state["user_uuid"] = str(uuid.uuid4())
return state["user_uuid"]
class PDFSearchApp:
def __init__(self):
self.indexed_docs = {}
self.current_pdf = None
def upload_and_convert(self, state, files, max_pages):
#change id
#id = generate_uuid(state)
pages = 0
if files is None:
return "No file uploaded"
try: #if onlyy one file
for file in files[:]: # Iterate over a shallow copy of the list, TEST THIS
# Extract the last part of the path (file name)
filename = os.path.basename(file.name)
# Split the base name into name and extension
name, ext = os.path.splitext(filename)
self.current_pdf = file.name
pdf_path=file.name
#if ppt will get replaced with path of ppt!
# Replace spaces and hyphens with underscores in the name
modified_filename = name.replace(" ", "_").replace("-", "_")
id = modified_filename #if string cmi then serialize the name, test for later
print(f"Uploading file: {id}, id: abc")
middleware = Middleware(modified_filename, create_collection=True)
pages = middleware.index(pdf_path, id=id, max_pages=max_pages)
self.indexed_docs[id] = True
#clear files for next consec upload after loop is complete
files = []
return f"Uploaded and extracted all pages"
except Exception as e:
return f"Error processing PDF: {str(e)}"
def display_file_list(text):
try:
# Retrieve all entries in the specified directory
directory_path = "pages"
current_working_directory = os.getcwd()
directory_path = os.path.join(current_working_directory, directory_path)
entries = os.listdir(directory_path)
# Filter out entries that are directories
directories = [entry for entry in entries if os.path.isdir(os.path.join(directory_path, entry))]
return directories
except FileNotFoundError:
return f"The directory {directory_path} does not exist."
except PermissionError:
return f"Permission denied to access {directory_path}."
except Exception as e:
return str(e)
def search_documents(self, state, query, num_results=1):
print(f"Searching for query: {query}")
#id = generate_uuid(state)
id = "test" # not used anyway
"""
if not self.indexed_docs[id]:
print("Please index documents first")
return "Please index documents first", "--"
""" #edited out to allow direct query on db to test persistency
if not query:
print("Please enter a search query")
return "Please enter a search query", "--"
try:
middleware = Middleware(id, create_collection=False)
search_results = middleware.search([query])[0]
#direct retrieve file path rather than rely on page nums!
#try to retrieve multiple files rather than a single page (TBD)
page_num = search_results[0][1] + 1 # final return value is a list of tuples, each tuple being: (score, doc_id, collection_name), so use [0][2] to get collection name of first ranked item
coll_num = search_results[0][2]
print(f"Retrieved page number: {page_num}")
img_path = f"pages/{coll_num}/page_{page_num}.png"
path = f"pages/{coll_num}/page_{page_num}"
print(f"Retrieved image path: {img_path}")
rag_response = rag.get_answer_from_gemini(query, [img_path])
return path,img_path, rag_response
except Exception as e:
return f"Error during search: {str(e)}", "--"
def delete(state,choice):
#delete file in pages, then use middleware to delete collection
# 1. Create a milvus client
client = MilvusClient("./milvus_demo.db")
path = f"pages/{choice}"
if os.path.exists(path):
shutil.rmtree(path)
#call milvus manager to delete collection
client.drop_collection(collection_name=choice)
return f"Deleted {choice}"
else:
return "Directory not found"
def dbupdate(state,metric_type,m_num,ef_num,topk):
os.environ['metrictype'] = metric_type
# Update the .env file with the new value
dotenv.set_key(dotenv_file, 'metrictype', metric_type)
os.environ['mnum'] = str(m_num)
dotenv.set_key(dotenv_file, 'mnum', str(m_num))
os.environ['efnum'] = str(ef_num)
dotenv.set_key(dotenv_file, 'efnum', str(ef_num))
os.environ['topk'] = str(topk)
dotenv.set_key(dotenv_file, 'topk', str(topk))
return "DB Settings Updated, Restart App To Load"
def list_downloaded_hf_models(state):
# Determine the cache directory
hf_cache_dir = Path(os.getenv('HF_HOME', Path.home() / '.cache/huggingface/hub'))
# Initialize a list to store model names
model_names = []
# Traverse the cache directory
for repo_dir in hf_cache_dir.glob('models--*'):
# Extract the model name from the directory structure
model_name = repo_dir.name.split('--', 1)[-1].replace('--', '/')
model_names.append(model_name)
return model_names
def list_downloaded_ollama_models(state):
# Retrieve the current user's name
username = getpass.getuser()
# Construct the target directory path
#base_path = f"C:\\Users\\{username}\\NEW_PATH\\manifests\\registry.ollama.ai\\library" #this is for if ollama pull is called from C://, if ollama pulls are called from the proj dir, use the NEW_PATH in the proj dir!
base_path = f"NEW_PATH\\manifests\\registry.ollama.ai\\library" #relative to proj dir! (IMPT: OLLAMA PULL COMMAND IN PROJ DIR!!!)
try:
# List all entries in the directory
with os.scandir(base_path) as entries:
# Filter and print only directories
directories = [entry.name for entry in entries if entry.is_dir()]
return directories
except FileNotFoundError:
print(f"The directory {base_path} does not exist.")
except PermissionError:
print(f"Permission denied to access {base_path}.")
except Exception as e:
print(f"An error occurred: {e}")
def model_settings(state,hfchoice, ollamachoice,flash, temp):
os.environ['colpali'] = hfchoice
# Update the .env file with the new value
dotenv.set_key(dotenv_file, 'colpali', hfchoice)
os.environ['ollama'] = ollamachoice
dotenv.set_key(dotenv_file, 'ollama', ollamachoice)
if flash == "Enabled":
os.environ['flashattn'] = "1"
dotenv.set_key(dotenv_file, 'flashattn', "1")
else:
os.environ['flashattn'] = "0"
dotenv.set_key(dotenv_file, 'flashattn', "0")
os.environ['temperature'] = str(temp)
dotenv.set_key(dotenv_file, 'temperature', str(temp))
return "Models Updated, Restart App To Use New Settings"
def create_ui():
app = PDFSearchApp()
with gr.Blocks(theme=gr.themes.Ocean(),css ="footer{display:none !important}") as demo:
state = gr.State(value={"user_uuid": None})
gr.Markdown("# Collar Multimodal RAG Demo")
gr.Markdown("Settings Available On Local Offline Setup")
with gr.Tab("Upload PDF"):
with gr.Column():
max_pages_input = gr.Slider(
minimum=1,
maximum=10000,
value=20,
step=10,
label="Max pages to extract and index per document"
)
file_input = gr.Files(label="Upload PDFs")
file_list = gr.Textbox(label="Uploaded Files", interactive=False, value="Available on Local Setup")
status = gr.Textbox(label="Indexing Status", interactive=False)
with gr.Tab("Query"):
with gr.Column():
query_input = gr.Textbox(label="Enter query")
#num_results = gr.Slider(
# minimum=1,
# maximum=10,
# value=5,
# step=1,
# label="Number of results"
#)
search_btn = gr.Button("Query")
llm_answer = gr.Textbox(label="RAG Response", interactive=False)
path = gr.Textbox(label="Link To Document Page", interactive=False)
images = gr.Image(label="Top page matching query")
with gr.Tab("Data Settings"): #deletion of collections, changing of model parameters etc
with gr.Column():
# Button to delete (TBD)
choice = gr.Dropdown(list(app.display_file_list()),label="Choice")
status1 = gr.Textbox(label="Deletion Status", interactive=False)
delete_button = gr.Button("Delete Document From DB")
# Create the dropdown component with default value as the first option
#Milvusindex = gr.Dropdown(["HNSW","FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ", "RHNSW_FLAT"], value="HNSW", label="Select Vector DB Index Parameter")
metric_type = gr.Dropdown(choices=["IP", "L2", "COSINE"],value="IP",label="Metric Type (Mathematical function to measure similarity)")
m_num = gr.Dropdown(
choices=["8", "16", "32", "64"], value="16",label="M Vectors (Maximum number of neighbors each node can connect to in the graph)")
ef_num = gr.Slider(
minimum=50,
maximum=1000,
value=500,
step=10,
label="EF Construction (Number of candidate neighbors considered for connection during index construction)"
)
topk = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top-K (Maximum number of entities to return in a single search of a document)"
)
db_button = gr.Button("Update DB Settings")
status3 = gr.Textbox(label="DB Update Status", interactive=False)
with gr.Tab("AI Model Settings"): #deletion of collections, changing of model parameters etc
with gr.Column():
# Button to delete (TBD)
hfchoice = gr.Dropdown(app.list_downloaded_hf_models(),value=os.environ['colpali'], label="Primary Visual Model")
ollamachoice = gr.Dropdown(app.list_downloaded_ollama_models(),value=os.environ['ollama'],label="Secondary Visual Retrieval-Augmented Generation (RAG) Model")
flash = gr.Dropdown(["Enabled","Disabled"], value = "Enabled",label ="Flash Attention 2.0 Acceleration")
temp = gr.Slider(
minimum=0.1,
maximum=1,
value=0.8,
step=0.1,
label="RAG Temperature"
)
model_button = gr.Button("Update Settings")
status2 = gr.Textbox(label="Update Status", interactive=False)
# Event handlers
file_input.change(
fn=app.upload_and_convert,
inputs=[state, file_input, max_pages_input],
outputs=[status]
)
search_btn.click(
#try to query without uploading first
fn= app.search_documents,
inputs=[state, query_input],
outputs=[path,images, llm_answer]
)
"""
delete_button.click(
fn=app.delete,
inputs=[choice],
outputs=[status1]
)
db_button.click(
fn=app.dbupdate,
inputs=[metric_type,m_num,ef_num,topk],
outputs=[status3]
)
model_button.click(
fn=app.model_settings,
inputs=[hfchoice, ollamachoice,flash,temp],
outputs=[status2]
)
"""
return demo
if __name__ == "__main__":
demo = create_ui()
#demo.launch(auth=("admin", "pass1234")) for with login page config
demo.launch()
|