Spaces:
Sleeping
Sleeping
File size: 3,346 Bytes
2999286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import omicverse as ov import scanpy as sc import scvelo as scv ov.utils.ov_plot_set() ov.utils.download_pathway_database() ov.utils.download_geneid_annotation_pair() adata = scv.datasets.pancreas() adata adata.X.max() sc.pp.normalize_total(adata, target_sum=1e4) sc.pp.log1p(adata) adata.X.max() pathway_dict=ov.utils.geneset_prepare('genesets/GO_Biological_Process_2021.txt',organism='Mouse') ##Assest one geneset geneset_name='response to vitamin (GO:0033273)' ov.single.geneset_aucell(adata, geneset_name=geneset_name, geneset=pathway_dict[geneset_name]) sc.pl.embedding(adata, basis='umap', color=["{}_aucell".format(geneset_name)]) ##Assest more than one geneset geneset_names=['response to vitamin (GO:0033273)','response to vitamin D (GO:0033280)'] ov.single.pathway_aucell(adata, pathway_names=geneset_names, pathways_dict=pathway_dict) sc.pl.embedding(adata, basis='umap', color=[i+'_aucell' for i in geneset_names]) ##Assest test geneset ov.single.geneset_aucell(adata, geneset_name='Sox', geneset=['Sox17', 'Sox4', 'Sox7', 'Sox18', 'Sox5']) sc.pl.embedding(adata, basis='umap', color=["Sox_aucell"]) ##Assest all pathways adata_aucs=ov.single.pathway_aucell_enrichment(adata, pathways_dict=pathway_dict, num_workers=8) adata_aucs.obs=adata[adata_aucs.obs.index].obs adata_aucs.obsm=adata[adata_aucs.obs.index].obsm adata_aucs.obsp=adata[adata_aucs.obs.index].obsp adata_aucs adata_aucs.write_h5ad('data/pancreas_auce.h5ad',compression='gzip') adata_aucs=sc.read('data/pancreas_auce.h5ad') sc.pl.embedding(adata_aucs, basis='umap', color=geneset_names) #adata_aucs.uns['log1p']['base']=None sc.tl.rank_genes_groups(adata_aucs, 'clusters', method='t-test',n_genes=100) sc.pl.rank_genes_groups_dotplot(adata_aucs,groupby='clusters', cmap='Spectral_r', standard_scale='var',n_genes=3) degs = sc.get.rank_genes_groups_df(adata_aucs, group='Beta', key='rank_genes_groups', log2fc_min=2, pval_cutoff=0.05)['names'].squeeze() degs import matplotlib.pyplot as plt #fig, axes = plt.subplots(4,3,figsize=(12,9)) axes=sc.pl.embedding(adata_aucs,ncols=3, basis='umap',show=False,return_fig=True,wspace=0.55,hspace=0.65, color=['clusters']+degs.values.tolist(), title=[ov.utils.plot_text_set(i,3,20)for i in ['clusters']+degs.values.tolist()]) axes.tight_layout() adata.uns['log1p']['base']=None sc.tl.rank_genes_groups(adata, 'clusters', method='t-test',n_genes=100) res=ov.single.pathway_enrichment(adata,pathways_dict=pathway_dict,organism='Mouse', group_by='clusters',plot=True) ax=ov.single.pathway_enrichment_plot(res,plot_title='Enrichment',cmap='Reds', xticklabels=True,cbar=False,square=True,vmax=10, yticklabels=True,cbar_kws={'label': '-log10(qvalue)','shrink': 0.5,}) |