Spaces:
Sleeping
Sleeping
File size: 8,962 Bytes
2999286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
#!/usr/bin/env python # coding: utf-8 # # Consensus Non-negative Matrix factorization (cNMF) # # cNMF is an analysis pipeline for inferring gene expression programs from single-cell RNA-Seq (scRNA-Seq) data. # # It takes a count matrix (N cells X G genes) as input and produces a (K x G) matrix of gene expression programs (GEPs) and a (N x K) matrix specifying the usage of each program for each cell in the data. You can read more about the method in the [github](https://github.com/dylkot/cNMF) and check out examples on dentategyrus. # In[1]: import scanpy as sc import omicverse as ov ov.plot_set() # ## Loading dataset # # Here, we use the dentategyrus dataset as an example for cNMF. # In[2]: import scvelo as scv adata=scv.datasets.dentategyrus() # In[3]: get_ipython().run_cell_magic('time', '', "adata=ov.pp.preprocess(adata,mode='shiftlog|pearson',n_HVGs=2000,)\nadata\n") # In[23]: ov.pp.scale(adata) ov.pp.pca(adata) # In[4]: import matplotlib.pyplot as plt from matplotlib import patheffects fig, ax = plt.subplots(figsize=(4,4)) ov.pl.embedding( adata, basis="X_umap", color=['clusters'], frameon='small', title="Celltypes", #legend_loc='on data', legend_fontsize=14, legend_fontoutline=2, #size=10, ax=ax, #legend_loc=True, add_outline=False, #add_outline=True, outline_color='black', outline_width=1, show=False, ) # ## Initialize and Training model # In[5]: import numpy as np ## Initialize the cnmf object that will be used to run analyses cnmf_obj = ov.single.cNMF(adata,components=np.arange(5,11), n_iter=20, seed=14, num_highvar_genes=2000, output_dir='example_dg/cNMF', name='dg_cNMF') # In[6]: ## Specify that the jobs are being distributed over a single worker (total_workers=1) and then launch that worker cnmf_obj.factorize(worker_i=0, total_workers=2) # In[7]: cnmf_obj.combine(skip_missing_files=True) # ## Compute the stability and error at each choice of K to see if a clear choice jumps out. # # Please note that the maximum stability solution is not always the best choice depending on the application. However it is often a good starting point even if you have to investigate several choices of K # In[8]: cnmf_obj.k_selection_plot(close_fig=False) # In this range, K=7 gave the most stable solution so we will begin by looking at that. # # The next step computes the consensus solution for a given choice of K. We first run it without any outlier filtering to see what that looks like. Setting the density threshold to anything >= 2.00 (the maximum possible distance between two unit vectors) ensures that nothing will be filtered. # # Then we run the consensus with a filter for outliers determined based on inspecting the histogram of distances between components and their nearest neighbors # In[9]: selected_K = 7 density_threshold = 2.00 # In[10]: cnmf_obj.consensus(k=selected_K, density_threshold=density_threshold, show_clustering=True, close_clustergram_fig=False) # The above consensus plot shows that there is a substantial degree of concordance between the replicates with a few outliers. An outlier threshold of 0.1 seems appropriate # In[11]: density_threshold = 0.10 # In[12]: cnmf_obj.consensus(k=selected_K, density_threshold=density_threshold, show_clustering=True, close_clustergram_fig=False) # ## Visualization the result # In[13]: import seaborn as sns import matplotlib.pyplot as plt from matplotlib import patheffects from matplotlib import gridspec import matplotlib.pyplot as plt width_ratios = [0.2, 4, 0.5, 10, 1] height_ratios = [0.2, 4] fig = plt.figure(figsize=(sum(width_ratios), sum(height_ratios))) gs = gridspec.GridSpec(len(height_ratios), len(width_ratios), fig, 0.01, 0.01, 0.98, 0.98, height_ratios=height_ratios, width_ratios=width_ratios, wspace=0, hspace=0) D = cnmf_obj.topic_dist[cnmf_obj.spectra_order, :][:, cnmf_obj.spectra_order] dist_ax = fig.add_subplot(gs[1,1], xscale='linear', yscale='linear', xticks=[], yticks=[],xlabel='', ylabel='', frameon=True) dist_im = dist_ax.imshow(D, interpolation='none', cmap='viridis', aspect='auto', rasterized=True) left_ax = fig.add_subplot(gs[1,0], xscale='linear', yscale='linear', xticks=[], yticks=[], xlabel='', ylabel='', frameon=True) left_ax.imshow(cnmf_obj.kmeans_cluster_labels.values[cnmf_obj.spectra_order].reshape(-1, 1), interpolation='none', cmap='Spectral', aspect='auto', rasterized=True) top_ax = fig.add_subplot(gs[0,1], xscale='linear', yscale='linear', xticks=[], yticks=[], xlabel='', ylabel='', frameon=True) top_ax.imshow(cnmf_obj.kmeans_cluster_labels.values[cnmf_obj.spectra_order].reshape(1, -1), interpolation='none', cmap='Spectral', aspect='auto', rasterized=True) cbar_gs = gridspec.GridSpecFromSubplotSpec(3, 3, subplot_spec=gs[1, 2], wspace=0, hspace=0) cbar_ax = fig.add_subplot(cbar_gs[1,2], xscale='linear', yscale='linear', xlabel='', ylabel='', frameon=True, title='Euclidean\nDistance') cbar_ax.set_title('Euclidean\nDistance',fontsize=12) vmin = D.min().min() vmax = D.max().max() fig.colorbar(dist_im, cax=cbar_ax, ticks=np.linspace(vmin, vmax, 3), ) cbar_ax.set_yticklabels(cbar_ax.get_yticklabels(),fontsize=12) # In[14]: density_filter = cnmf_obj.local_density.iloc[:, 0] < density_threshold fig, hist_ax = plt.subplots(figsize=(4,4)) #hist_ax = fig.add_subplot(hist_gs[0,0], xscale='linear', yscale='linear', # xlabel='', ylabel='', frameon=True, title='Local density histogram') hist_ax.hist(cnmf_obj.local_density.values, bins=np.linspace(0, 1, 50)) hist_ax.yaxis.tick_right() xlim = hist_ax.get_xlim() ylim = hist_ax.get_ylim() if density_threshold < xlim[1]: hist_ax.axvline(density_threshold, linestyle='--', color='k') hist_ax.text(density_threshold + 0.02, ylim[1] * 0.95, 'filtering\nthreshold\n\n', va='top') hist_ax.set_xlim(xlim) hist_ax.set_xlabel('Mean distance to k nearest neighbors\n\n%d/%d (%.0f%%) spectra above threshold\nwere removed prior to clustering'%(sum(~density_filter), len(density_filter), 100*(~density_filter).mean())) hist_ax.set_title('Local density histogram') # ## Explode the cNMF result # # We can load the results for a cNMF run with a given K and density filtering threshold like below # In[15]: result_dict = cnmf_obj.load_results(K=selected_K, density_threshold=density_threshold) # In[16]: result_dict['usage_norm'].head() # In[17]: result_dict['gep_scores'].head() # In[18]: result_dict['gep_tpm'].head() # In[19]: result_dict['top_genes'].head() # We can extract cell classes directly based on the highest cNMF in each cell, but this has the disadvantage that it will lead to mixed cell classes if the heterogeneity of our data is not as strong as it should be. # In[20]: cnmf_obj.get_results(adata,result_dict) # In[21]: ov.pl.embedding(adata, basis='X_umap',color=result_dict['usage_norm'].columns, use_raw=False, ncols=3, vmin=0, vmax=1,frameon='small') # In[24]: ov.pl.embedding( adata, basis="X_umap", color=['cNMF_cluster'], frameon='small', #title="Celltypes", #legend_loc='on data', legend_fontsize=14, legend_fontoutline=2, #size=10, #legend_loc=True, add_outline=False, #add_outline=True, outline_color='black', outline_width=1, show=False, ) # Here we are, proposing another idea of categorisation. We use cells with cNMF greater than 0.5 as a primitive class, and then train a random forest classification model, and then use the random forest classification model to classify cells with cNMF less than 0.5 to get a more accurate # In[25]: cnmf_obj.get_results_rfc(adata,result_dict, use_rep='scaled|original|X_pca', cNMF_threshold=0.5) # In[27]: ov.pl.embedding( adata, basis="X_umap", color=['cNMF_cluster_rfc','cNMF_cluster_clf'], frameon='small', #title="Celltypes", #legend_loc='on data', legend_fontsize=14, legend_fontoutline=2, #size=10, #legend_loc=True, add_outline=False, #add_outline=True, outline_color='black', outline_width=1, show=False, ) # In[25]: plot_genes=[] for i in result_dict['top_genes'].columns: plot_genes+=result_dict['top_genes'][i][:3].values.reshape(-1).tolist() # In[26]: sc.pl.dotplot(adata,plot_genes, "cNMF_cluster", dendrogram=False,standard_scale='var',) |