Spaces:
Sleeping
Sleeping
File size: 16,021 Bytes
2999286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
#!/usr/bin/env python # coding: utf-8 # # Spatial Communication # # Spatial communication is a point of interest for us for the Spatial Transcriptomics Society, and we would like to find the conduction process of spatial communication. # # Here, we introduce two method integrated in omicverse named `COMMOT` and `flowsig`. # # We made three improvements in integrating the `COMMOT` and `flowsig` algorithm in OmicVerse: # # - We reduced the installation conflict of `COMMOT` and `flowsig`, user only need to update OmicVerse to the latest version. # - We optimized the visualization of `COMMOT` and `flowsig` and unified the data preprocessing process so that users don't need to struggle with different data processing flows. # - We have fixed some bugs that could occur during function. # # If you found this tutorial helpful, please cite `COMMOT`, `flowsig` and OmicVerse: # # - Cang, Z., Zhao, Y., Almet, A.A. et al. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nat Methods 20, 218–228 (2023). https://doi.org/10.1038/s41592-022-01728-4 # - Almet, A.A., Tsai, YC., Watanabe, M. et al. Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics. Nat Methods (2024). https://doi.org/10.1038/s41592-024-02380-w # In[1]: import omicverse as ov #print(f"omicverse version: {ov.__version__}") import scanpy as sc #print(f"scanpy version: {sc.__version__}") ov.plot_set() # ## Preprocess data # # Here we present our re-analysis of 151676 sample of the dorsolateral prefrontal cortex (DLPFC) dataset. Maynard et al. has manually annotated DLPFC layers and white matter (WM) based on the morphological features and gene markers. # # This tutorial demonstrates how to identify spatial domains on 10x Visium data using STAGATE. The processed data are available at https://github.com/LieberInstitute/spatialLIBD. We downloaded the manual annotation from the spatialLIBD package and provided at https://drive.google.com/drive/folders/10lhz5VY7YfvHrtV40MwaqLmWz56U9eBP?usp=sharing. # In[40]: adata = sc.read_visium(path='data', count_file='151676_filtered_feature_bc_matrix.h5') adata.var_names_make_unique() # <div class="admonition warning"> # <p class="admonition-title">Note</p> # <p> # We introduced the spatial special svg calculation module prost in omicverse versions greater than `1.6.0` to replace scanpy's HVGs, if you want to use scanpy's HVGs you can set mode=`scanpy` in `ov.space.svg` or use the following code. # </p> # </div> # # ```python # #adata=ov.pp.preprocess(adata,mode='shiftlog|pearson',n_HVGs=3000,target_sum=1e4) # #adata.raw = adata # #adata = adata[:, adata.var.highly_variable_features] # ``` # In[ ]: sc.pp.calculate_qc_metrics(adata, inplace=True) adata = adata[:,adata.var['total_counts']>100] adata=ov.space.svg(adata,mode='prost',n_svgs=3000,target_sum=1e4,platform="visium",) adata # In[ ]: adata.write('data/cluster_svg.h5ad',compression='gzip') # In[3]: #adata=ov.read('data/cluster_svg.h5ad',compression='gzip') # ## Communication Analysis with COMMOT # # ### Spatial communication inference # # We will use the CellChatDB ligand-receptor database here. Only the secreted signaling LR pairs will be used. # # Jin, Suoqin, et al. “Inference and analysis of cell-cell communication using CellChat.” Nature communications 12.1 (2021): 1-20. # In[42]: df_cellchat = ov.externel.commot.pp.ligand_receptor_database(species='human', signaling_type='Secreted Signaling', database='CellChat') print(df_cellchat.shape) # We then filter the LR pairs to keep only the pairs with both ligand and receptor expressed in at least 5% of the spots. # In[43]: df_cellchat_filtered = ov.externel.commot.pp.filter_lr_database(df_cellchat, adata, min_cell_pct=0.05) print(df_cellchat_filtered.shape) # Now perform spatial communication inference for these 250 ligand-receptor pairs with a spatial distance limit of 500. CellChat database considers heteromeric units. The signaling results are stored as spot-by-spot matrices in the obsp slots. For example, the score for spot i signaling to spot j through the LR pair can be retrieved from `adata.obsp['commot-cellchat-Wnt4-Fzd4_Lrp6'][i,j]`. # In[44]: ov.externel.commot.tl.spatial_communication(adata, database_name='cellchat', df_ligrec=df_cellchat_filtered, dis_thr=500, heteromeric=True, pathway_sum=True) # (Optional) We read the ground truth area of our spatial data # # This step is not mandatory to run, in the tutorial, it's just to demonstrate the accuracy of our clustering effect, and in your own tasks, there is often no Ground_truth # # <div class="admonition warning"> # <p class="admonition-title">Note</p> # <p> # You can also use Celltype and other annotated results in adata.obs, here is just a randomly selected type, there is no particular significance, in order to facilitate the visualization and study the signal # </p> # </div> # In[45]: # read the annotation import pandas as pd import os Ann_df = pd.read_csv(os.path.join('data', '151676_truth.txt'), sep='\t', header=None, index_col=0) Ann_df.columns = ['Ground_Truth'] adata.obs['Ground_Truth'] = Ann_df.loc[adata.obs_names, 'Ground_Truth'] Layer_color=['#283b5c', '#d8e17b', '#838e44', '#4e8991', '#d08c35', '#511a3a', '#c2c2c2', '#dfc648'] sc.pl.spatial(adata, img_key="hires", color=["Ground_Truth"],palette=Layer_color) # ### Visualize the communication signal in spatial space # # Determine the spatial direction of a signaling pathway, for example, the FGF pathway. The interpolated signaling directions for where the signals are sent by the spots and where the signals received by the spots are from are stored in `adata.obsm['commot_sender_vf-cellchat-FGF']` and `adata.obsm['commot_receiver_vf-cellchat-FGF']`, respectively. # # Taken together, our findings indicate that FGF signaling is crucial for cortical folding in gyrencephalic mammals and is a pivotal upstream regulator of the production of OSVZ progenitors. FGF signaling is the first signaling pathway found to regulate cortical folding. # In[46]: ct_color_dict=dict(zip(adata.obs['Ground_Truth'].cat.categories, adata.uns['Ground_Truth_colors'])) # In[47]: adata.uns['commot-cellchat-info']['df_ligrec'].head() # In[48]: import matplotlib.pyplot as plt scale=0.000008 k=5 goal_pathway='FGF' ov.externel.commot.tl.communication_direction(adata, database_name='cellchat', pathway_name=goal_pathway, k=k) ov.externel.commot.pl.plot_cell_communication(adata, database_name='cellchat', pathway_name='FGF', plot_method='grid', background_legend=True, scale=scale, ndsize=8, grid_density=0.4, summary='sender', background='cluster', clustering='Ground_Truth', cluster_cmap=ct_color_dict, cmap='Alphabet', normalize_v = True, normalize_v_quantile=0.995) plt.title(f'Pathway:{goal_pathway}',fontsize=13) #plt.savefig('figures/TLE/TLE_cellchat_all_FGF.png',dpi=300,bbox_inches='tight') #fig.savefig('pdf/TLE/control_cellchat_all_FGF.pdf',dpi=300,bbox_inches='tight') # In[49]: adata.write('data/151676_commot.h5ad',compression='gzip') # In[2]: adata=ov.read('data/151676_commot.h5ad') adata # ## Communication signal inference with flowsig # # ### Construct GEMs # We now construct gene expression modules (GEMs) from the unnormalised count data. For ST data, we use `NMF`. # In[3]: adata.layers['normalized'] = adata.X.copy() # We construct 10 gene expression modules using the raw cell count. ov.externel.flowsig.pp.construct_gems_using_nmf(adata, n_gems = 10, layer_key = 'counts', ) # If you want to study the genes in a GEM, we provide the `ov.externel.flowsig.ul.get_top_gem_genes` function for getting the genes in a specific GEM. # In[4]: goal_gem='GEM-5' gem_gene=ov.externel.flowsig.ul.get_top_gem_genes(adata=adata, gems=[goal_gem], n_genes=100, gene_type='all', method = 'nmf', ) gem_gene.head() # ### Construct the flow expression matrices # # We construct augmented flow expression matrices for each condition that measure three types of variables: # # 1. Intercellular signal inflow, i.e., how much of a signal did a cell receive. For ST data, signal inflow is constructed by summing the received signals for each significant ligand inferred by COMMOT. # 2. GEMs, which encapsulate intracellular information processing. We define these as cellwise membership to the GEM. # Intercellular signal outflow, i.e., how much of a signal did a cell send. These are simply ligand gene expression. # 3. The kay assumption of flowsig is that all intercellular information flows are directed from signal inflows to GEMs, from one GEM to another GEM, and from GEMs to signal outflows. # # For spatial data, we use COMMOT output directly to construct signal inflow expression and do not need knowledge about TF databases. # In[5]: commot_output_key = 'commot-cellchat' # We first construct the potential cellular flows from the commot output ov.externel.flowsig.pp.construct_flows_from_commot(adata, commot_output_key, gem_expr_key = 'X_gem', scale_gem_expr = True, flowsig_network_key = 'flowsig_network', flowsig_expr_key = 'X_flow') # For spatial data, we retain spatially informative variables, which we determine by calculating the Moran's I value for signal inflow and signal outflow variables. In case the spatial graph has not been calculated for this data yet, FlowSig will do so, meaning that we need to specify both the coordinate type, grid or generic, and in the case of the former, n_neighs, which in this case, is 8. # # Flow expression variables are defined to be spatially informative if their Moran's I value is above a specified threshold. # In[6]: # Then we subset for "spatially flowing" inflows and outflows ov.externel.flowsig.pp.determine_informative_variables(adata, flowsig_expr_key = 'X_flow', flowsig_network_key = 'flowsig_network', spatial = True, moran_threshold = 0.15, coord_type = 'grid', n_neighbours = 8, library_key = None) # ### Learn intercellular flows # # For spatial data, where there are far fewer "control vs. perturbed" studies, we use the GSP method, which uses conditional independence testing and a greedy algorithm to learn the CPDAG containing directed arcs and undirected edges. # # For spatial data, we cannot bootstrap by resampling across individual cells because we would lose the additional layer of correlation contained in the spatial data. Rather, we divide the tissue up into spatial "blocks" and resample within blocks. This is known as block bootstrapping. # # To calculate the blocks, we used scikit-learn's k-means clustering method to generate 20 roughly equally sized spatial blocks. # In[9]: from sklearn.cluster import KMeans import pandas as pd kmeans = KMeans(n_clusters=10, random_state=0).fit(adata.obsm['spatial']) adata.obs['spatial_kmeans'] = pd.Series(kmeans.labels_, dtype='category').values # We use these blocks to learn the spatial intercellular flows. # In[ ]: # # Now we are ready to learn the network ov.externel.flowsig.tl.learn_intercellular_flows(adata, flowsig_key = 'flowsig_network', flow_expr_key = 'X_flow', use_spatial = True, block_key = 'spatial_kmeans', n_jobs = 4, n_bootstraps = 500) # ### Partially validate intercellular flow network # # Finally, we will remove any "false positive" edges. Noting that the CPDAG contains directed arcs and undirected arcs we do two things. # # First, we remove directed arcs that are not oriented from signal inflow to GEM, GEM to GEM, or from GEM to signal outflow and for undirected edges, we reorient them so that they obey the previous directionalities. # In[8]: # This part is key for reducing false positives ov.externel.flowsig.tl.apply_biological_flow(adata, flowsig_network_key = 'flowsig_network', adjacency_key = 'adjacency', validated_key = 'validated') # Second, we will remove directed arcs whose bootstrapped frequencies are below a specified edge threshold as well as undirected edges whose total bootstrapped frequencies are below the same threshold. Because we did not have perturbation data, we specify a more stringent edge threshold. # # In[26]: edge_threshold = 0.7 ov.externel.flowsig.tl.filter_low_confidence_edges(adata, edge_threshold = edge_threshold, flowsig_network_key = 'flowsig_network', adjacency_key = 'adjacency_validated', filtered_key = 'filtered') # In[27]: adata.write('data/cortex_commot_flowsig.h5ad',compression='gzip') # In[2]: #adata=ov.read('data/cortex_commot_flowsig.h5ad') # ## Visualize the result of flowsig # # We can construct the directed NetworkX DiGraph object from adjacency_validated_filtered. # In[3]: flow_network = ov.externel.flowsig.tl.construct_intercellular_flow_network(adata, flowsig_network_key = 'flowsig_network', adjacency_key = 'adjacency_validated_filtered') # ### Cell-specific GEM # # The first thing we need to be concerned about is which GEM, exactly, is relevant to the cell I want to study. Here, we use dotplot to visualize the expression of GEM in different cell types. # In[4]: flowsig_expr_key='X_gem' X_flow = adata.obsm[flowsig_expr_key] adata_subset = sc.AnnData(X=X_flow) adata_subset.obs = adata.obs adata_subset.var.index =[f'GEM-{i}' for i in range(1,len(adata_subset.var)+1)] # In[5]: import matplotlib.pyplot as plt ax=sc.pl.dotplot(adata_subset, adata_subset.var.index, groupby='Ground_Truth', dendrogram=True,standard_scale='var',cmap='Reds',show=False) color_dict=dict(zip(adata.obs['Ground_Truth'].cat.categories,adata.uns['Ground_Truth_colors'])) # ### Visualize the flowsig network # # We fixed the network function provided by the author and provided a better visualization. # In[7]: ov.pl.plot_flowsig_network(flow_network=flow_network, gem_plot=['GEM-2','GEM-7','GEM-1','GEM-3','GEM-4','GEM-5'], figsize=(8,4), curve_awarg={'eps':2}, node_shape={'GEM':'^','Sender':'o','Receptor':'o'}, ylim=(-0.5,0.5),xlim=(-3,3)) |