File size: 16,021 Bytes
2999286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#!/usr/bin/env python
# coding: utf-8

# # Spatial Communication
# 
# Spatial communication is a point of interest for us for the Spatial Transcriptomics Society, and we would like to find the conduction process of spatial communication.
# 
# Here, we introduce two method integrated in omicverse named `COMMOT` and `flowsig`.
# 
# We made three improvements in integrating the `COMMOT` and `flowsig` algorithm in OmicVerse:
# 
# - We reduced the installation conflict of `COMMOT` and `flowsig`, user only need to update OmicVerse to the latest version.
# - We optimized the visualization of `COMMOT` and `flowsig` and unified the data preprocessing process so that users don't need to struggle with different data processing flows.
# - We have fixed some bugs that could occur during function.
# 
# If you found this tutorial helpful, please cite `COMMOT`, `flowsig` and OmicVerse:
# 
# - Cang, Z., Zhao, Y., Almet, A.A. et al. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nat Methods 20, 218–228 (2023). https://doi.org/10.1038/s41592-022-01728-4
# - Almet, A.A., Tsai, YC., Watanabe, M. et al. Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics. Nat Methods (2024). https://doi.org/10.1038/s41592-024-02380-w

# In[1]:


import omicverse as ov
#print(f"omicverse version: {ov.__version__}")
import scanpy as sc
#print(f"scanpy version: {sc.__version__}")
ov.plot_set()


# ## Preprocess data
# 
# Here we present our re-analysis of 151676 sample of the dorsolateral prefrontal cortex (DLPFC) dataset. Maynard et al. has manually annotated DLPFC layers and white matter (WM) based on the morphological features and gene markers.
# 
# This tutorial demonstrates how to identify spatial domains on 10x Visium data using STAGATE. The processed data are available at https://github.com/LieberInstitute/spatialLIBD. We downloaded the manual annotation from the spatialLIBD package and provided at https://drive.google.com/drive/folders/10lhz5VY7YfvHrtV40MwaqLmWz56U9eBP?usp=sharing.

# In[40]:


adata = sc.read_visium(path='data', count_file='151676_filtered_feature_bc_matrix.h5')
adata.var_names_make_unique()


# <div class="admonition warning">
#   <p class="admonition-title">Note</p>
#   <p>
#     We introduced the spatial special svg calculation module prost in omicverse versions greater than `1.6.0` to replace scanpy's HVGs, if you want to use scanpy's HVGs you can set mode=`scanpy` in `ov.space.svg` or use the following code.
#   </p>
# </div>
# 
# ```python
# #adata=ov.pp.preprocess(adata,mode='shiftlog|pearson',n_HVGs=3000,target_sum=1e4)
# #adata.raw = adata
# #adata = adata[:, adata.var.highly_variable_features]
# ```

# In[ ]:


sc.pp.calculate_qc_metrics(adata, inplace=True)
adata = adata[:,adata.var['total_counts']>100]
adata=ov.space.svg(adata,mode='prost',n_svgs=3000,target_sum=1e4,platform="visium",)
adata


# In[ ]:


adata.write('data/cluster_svg.h5ad',compression='gzip')


# In[3]:


#adata=ov.read('data/cluster_svg.h5ad',compression='gzip')


# ## Communication Analysis with COMMOT
# 
# ### Spatial communication inference
# 
# We will use the CellChatDB ligand-receptor database here. Only the secreted signaling LR pairs will be used.
# 
# Jin, Suoqin, et al. “Inference and analysis of cell-cell communication using CellChat.” Nature communications 12.1 (2021): 1-20.

# In[42]:


df_cellchat = ov.externel.commot.pp.ligand_receptor_database(species='human', 
                                                             signaling_type='Secreted Signaling', 
                                                             database='CellChat')
print(df_cellchat.shape)


# We then filter the LR pairs to keep only the pairs with both ligand and receptor expressed in at least 5% of the spots.

# In[43]:


df_cellchat_filtered = ov.externel.commot.pp.filter_lr_database(df_cellchat, 
                                                                adata, 
                                                                min_cell_pct=0.05)
print(df_cellchat_filtered.shape)


# Now perform spatial communication inference for these 250 ligand-receptor pairs with a spatial distance limit of 500. CellChat database considers heteromeric units. The signaling results are stored as spot-by-spot matrices in the obsp slots. For example, the score for spot i signaling to spot j through the LR pair can be retrieved from `adata.obsp['commot-cellchat-Wnt4-Fzd4_Lrp6'][i,j]`.

# In[44]:


ov.externel.commot.tl.spatial_communication(adata,
                            database_name='cellchat', 
                            df_ligrec=df_cellchat_filtered, 
                            dis_thr=500, heteromeric=True, 
                            pathway_sum=True)


# (Optional) We read the ground truth area of our spatial data
# 
# This step is not mandatory to run, in the tutorial, it's just to demonstrate the accuracy of our clustering effect, and in your own tasks, there is often no Ground_truth
# 
# <div class="admonition warning">
#   <p class="admonition-title">Note</p>
#   <p>
#     You can also use Celltype and other annotated results in adata.obs, here is just a randomly selected type, there is no particular significance, in order to facilitate the visualization and study the signal
#   </p>
# </div>

# In[45]:


# read the annotation
import pandas as pd
import os
Ann_df = pd.read_csv(os.path.join('data', '151676_truth.txt'), sep='\t', header=None, index_col=0)
Ann_df.columns = ['Ground_Truth']
adata.obs['Ground_Truth'] = Ann_df.loc[adata.obs_names, 'Ground_Truth']
Layer_color=['#283b5c', '#d8e17b', '#838e44', '#4e8991', '#d08c35', '#511a3a',
       '#c2c2c2', '#dfc648']
sc.pl.spatial(adata, img_key="hires", color=["Ground_Truth"],palette=Layer_color)


# ### Visualize the communication signal in spatial space
# 
# Determine the spatial direction of a signaling pathway, for example, the FGF pathway. The interpolated signaling directions for where the signals are sent by the spots and where the signals received by the spots are from are stored in `adata.obsm['commot_sender_vf-cellchat-FGF']` and `adata.obsm['commot_receiver_vf-cellchat-FGF']`, respectively.
# 
# Taken together, our findings indicate that FGF signaling is crucial for cortical folding in gyrencephalic mammals and is a pivotal upstream regulator of the production of OSVZ progenitors. FGF signaling is the first signaling pathway found to regulate cortical folding.

# In[46]:


ct_color_dict=dict(zip(adata.obs['Ground_Truth'].cat.categories,
                      adata.uns['Ground_Truth_colors']))


# In[47]:


adata.uns['commot-cellchat-info']['df_ligrec'].head()


# In[48]:


import matplotlib.pyplot as plt
scale=0.000008
k=5
goal_pathway='FGF'
ov.externel.commot.tl.communication_direction(adata, database_name='cellchat', pathway_name=goal_pathway, k=k)
ov.externel.commot.pl.plot_cell_communication(adata, database_name='cellchat', 
                                              pathway_name='FGF', plot_method='grid', 
                                              background_legend=True,
                                              scale=scale, ndsize=8, grid_density=0.4, 
                                              summary='sender', background='cluster', 
                                              clustering='Ground_Truth', 
                                              cluster_cmap=ct_color_dict,
                                              cmap='Alphabet',
                                              normalize_v = True, normalize_v_quantile=0.995)
plt.title(f'Pathway:{goal_pathway}',fontsize=13)
#plt.savefig('figures/TLE/TLE_cellchat_all_FGF.png',dpi=300,bbox_inches='tight')
#fig.savefig('pdf/TLE/control_cellchat_all_FGF.pdf',dpi=300,bbox_inches='tight')


# In[49]:


adata.write('data/151676_commot.h5ad',compression='gzip')


# In[2]:


adata=ov.read('data/151676_commot.h5ad')
adata


# ## Communication signal inference with flowsig
# 
# ### Construct GEMs
# We now construct gene expression modules (GEMs) from the unnormalised count data. For ST data, we use `NMF`.

# In[3]:


adata.layers['normalized'] = adata.X.copy()

# We construct 10 gene expression modules using the raw cell count.
ov.externel.flowsig.pp.construct_gems_using_nmf(adata,
                                n_gems = 10,
                                layer_key = 'counts',
                                                   )


# If you want to study the genes in a GEM, we provide the `ov.externel.flowsig.ul.get_top_gem_genes` function for getting the genes in a specific GEM.

# In[4]:


goal_gem='GEM-5'
gem_gene=ov.externel.flowsig.ul.get_top_gem_genes(adata=adata,
                                            gems=[goal_gem],
                                         n_genes=100,
                                         gene_type='all',
                                        method = 'nmf',
                                        )
gem_gene.head()


# ### Construct the flow expression matrices
# 
# We construct augmented flow expression matrices for each condition that measure three types of variables:
# 
# 1. Intercellular signal inflow, i.e., how much of a signal did a cell receive. For ST data, signal inflow is constructed by summing the received signals for each significant ligand inferred by COMMOT.
# 2. GEMs, which encapsulate intracellular information processing. We define these as cellwise membership to the GEM.
# Intercellular signal outflow, i.e., how much of a signal did a cell send. These are simply ligand gene expression.
# 3. The kay assumption of flowsig is that all intercellular information flows are directed from signal inflows to GEMs, from one GEM to another GEM, and from GEMs to signal outflows.
# 
# For spatial data, we use COMMOT output directly to construct signal inflow expression and do not need knowledge about TF databases.

# In[5]:


commot_output_key = 'commot-cellchat'
# We first construct the potential cellular flows from the commot output
ov.externel.flowsig.pp.construct_flows_from_commot(adata,
                                commot_output_key,
                                gem_expr_key = 'X_gem',
                                scale_gem_expr = True,
                                flowsig_network_key = 'flowsig_network',
                                flowsig_expr_key = 'X_flow')


# For spatial data, we retain spatially informative variables, which we determine by calculating the Moran's I value for signal inflow and signal outflow variables. In case the spatial graph has not been calculated for this data yet, FlowSig will do so, meaning that we need to specify both the coordinate type, grid or generic, and in the case of the former, n_neighs, which in this case, is 8.
# 
# Flow expression variables are defined to be spatially informative if their Moran's I value is above a specified threshold.

# In[6]:


# Then we subset for "spatially flowing" inflows and outflows
ov.externel.flowsig.pp.determine_informative_variables(adata,  
                                    flowsig_expr_key = 'X_flow',
                                    flowsig_network_key = 'flowsig_network',
                                    spatial = True,
                                    moran_threshold = 0.15,
                                    coord_type = 'grid',
                                    n_neighbours = 8,
                                    library_key = None)


# ### Learn intercellular flows
# 
# For spatial data, where there are far fewer "control vs. perturbed" studies, we use the GSP method, which uses conditional independence testing and a greedy algorithm to learn the CPDAG containing directed arcs and undirected edges.
# 
# For spatial data, we cannot bootstrap by resampling across individual cells because we would lose the additional layer of correlation contained in the spatial data. Rather, we divide the tissue up into spatial "blocks" and resample within blocks. This is known as block bootstrapping.
# 
# To calculate the blocks, we used scikit-learn's k-means clustering method to generate 20 roughly equally sized spatial blocks.

# In[9]:


from sklearn.cluster import KMeans
import pandas as pd

kmeans = KMeans(n_clusters=10, random_state=0).fit(adata.obsm['spatial'])
adata.obs['spatial_kmeans'] = pd.Series(kmeans.labels_, dtype='category').values


# We use these blocks to learn the spatial intercellular flows.

# In[ ]:


# # Now we are ready to learn the network
ov.externel.flowsig.tl.learn_intercellular_flows(adata,
                        flowsig_key = 'flowsig_network',
                        flow_expr_key = 'X_flow',
                        use_spatial = True,
                        block_key = 'spatial_kmeans',
                        n_jobs = 4,
                        n_bootstraps = 500)


# ### Partially validate intercellular flow network
# 
# Finally, we will remove any "false positive" edges. Noting that the CPDAG contains directed arcs and undirected arcs we do two things.
# 
# First, we remove directed arcs that are not oriented from signal inflow to GEM, GEM to GEM, or from GEM to signal outflow and for undirected edges, we reorient them so that they obey the previous directionalities.

# In[8]:


# This part is key for reducing false positives
ov.externel.flowsig.tl.apply_biological_flow(adata,
                        flowsig_network_key = 'flowsig_network',
                        adjacency_key = 'adjacency',
                        validated_key = 'validated')


# Second, we will remove directed arcs whose bootstrapped frequencies are below a specified edge threshold as well as undirected edges whose total bootstrapped frequencies are below the same threshold. Because we did not have perturbation data, we specify a more stringent edge threshold.
# 

# In[26]:


edge_threshold = 0.7

ov.externel.flowsig.tl.filter_low_confidence_edges(adata,
                                edge_threshold = edge_threshold,
                                flowsig_network_key = 'flowsig_network',
                                adjacency_key = 'adjacency_validated',
                                filtered_key = 'filtered')


# In[27]:


adata.write('data/cortex_commot_flowsig.h5ad',compression='gzip')


# In[2]:


#adata=ov.read('data/cortex_commot_flowsig.h5ad')


# ## Visualize the result of flowsig
# 
# We can construct the directed NetworkX DiGraph object from adjacency_validated_filtered.

# In[3]:


flow_network = ov.externel.flowsig.tl.construct_intercellular_flow_network(adata,
                                                        flowsig_network_key = 'flowsig_network',
                                                        adjacency_key = 'adjacency_validated_filtered')


# ### Cell-specific GEM
# 
# The first thing we need to be concerned about is which GEM, exactly, is relevant to the cell I want to study. Here, we use dotplot to visualize the expression of GEM in different cell types.

# In[4]:


flowsig_expr_key='X_gem'
X_flow = adata.obsm[flowsig_expr_key]
adata_subset = sc.AnnData(X=X_flow)
adata_subset.obs = adata.obs
adata_subset.var.index =[f'GEM-{i}' for i in range(1,len(adata_subset.var)+1)]


# In[5]:


import matplotlib.pyplot as plt
ax=sc.pl.dotplot(adata_subset, adata_subset.var.index, groupby='Ground_Truth', 
              dendrogram=True,standard_scale='var',cmap='Reds',show=False)
color_dict=dict(zip(adata.obs['Ground_Truth'].cat.categories,adata.uns['Ground_Truth_colors']))


# ### Visualize the flowsig network
# 
# We fixed the network function provided by the author and provided a better visualization.

# In[7]:


ov.pl.plot_flowsig_network(flow_network=flow_network,
                         gem_plot=['GEM-2','GEM-7','GEM-1','GEM-3','GEM-4','GEM-5'],
                        figsize=(8,4),
                     curve_awarg={'eps':2},
                      node_shape={'GEM':'^','Sender':'o','Receptor':'o'},
                          ylim=(-0.5,0.5),xlim=(-3,3))