File size: 24,305 Bytes
2999286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
#!/usr/bin/env python
# coding: utf-8

# # Visualization of single cell RNA-seq
# 
# In this part, we will introduce the tutorial of special plot of `omicverse`.

# In[1]:


import omicverse as ov
import scanpy as sc
#import scvelo as scv
ov.plot_set()


# We utilized single-cell RNA-seq data (GEO accession: GSE95753) obtained from the dentate gyrus of the hippocampus in mouse.

# In[2]:


adata = ov.read('data/DentateGyrus/10X43_1.h5ad')
adata


# ## Optimizing color mapping
# 
# Visualizing spatially resolved biological data with appropriate color mapping can significantly facilitate the exploration of underlying patterns and heterogeneity. Spaco (spatial colorization) provides a spatially constrained approach that generates discriminate color assignments for visualizing single-cell spatial data in various scenarios.
# 
# Jing Z, Zhu Q, Li L, Xie Y, Wu X, Fang Q, et al. [Spaco: A comprehensive tool for coloring spatial data at single-cell resolution.](https://doi.org/10.1016/j.patter.2023.100915) Patterns. 2024;100915
# 
# 
# **Function**: `ov.pl.optim_palette`: 
# - adata: the datasets of scRNA-seq
# - basis: he position on the plane should be set to `X_spatial` in spatial RNA-seq, `X_umap`,`X_tsne`,`X_mde` in scRNA-seq and should not be set to `X_pca`
# - colors: Specify the colour to be optimised, which should be for one of the columns in adata.obs, noting that it should have the colour first, and that we can use ov.pl.embedding to colour the cell types. If there is no colour then colour blind optimisation colour will be used.
# - palette: You can also re-specify the colour bar that needs to be drawn, just set `palette=['#FFFFFF','#000000']`, we have prepared `ov.pl.red_color`,`ov.pl.blue_color`,`ov.pl.green_color`,`ov.pl.orange_color`, by default.

# In[ ]:


optim_palette=ov.pl.optim_palette(adata,basis='X_umap',colors='clusters')


# In[4]:


import matplotlib.pyplot as plt
fig,ax=plt.subplots(figsize = (4,4))
ov.pl.embedding(adata,
                basis='X_umap',
               color='clusters',
               frameon='small',
               show=False,
               palette=optim_palette,
               ax=ax,)
plt.title('Cell Type of DentateGyrus',fontsize=15)


# In[5]:


ov.pl.embedding(adata,
                basis='X_umap',
               color='age(days)',
               frameon='small',
               show=False,)


# ## Stacked histogram of cell proportions
# 
# This is a graph that appears widely in various CNS-level journals, and is limited to the fact that `scanpy` does not have a proper way of plotting it, and we provide `ov.pl.cellproportion` for plotting it here.
# 
# **Function**: `ov.pl.cellproportion`: 
# - adata: the datasets of scRNA-seq
# - celltype_clusters: Specify the colour to plot, which should be for one of the columns in adata.obs, noting that it should have the colour first, and that we can use ov.pl.embedding to colour the cell types. If there is no colour then colour blind optimisation colour will be used.
# - groupby: The group variable for the different groups of cell types we need to display, in this case we are displaying different ages, so we set it to `age(days)`
# - groupby_li: If there are too many groups, we can also select the ones we are interested in plotting, here we use groupby_li to plot the groups
# - figsize: If we specify axes, then this variable can be left empty
# - legend: Whether to show a legend

# In[6]:


import matplotlib.pyplot as plt
fig,ax=plt.subplots(figsize = (1,4))
ov.pl.cellproportion(adata=adata,celltype_clusters='clusters',
                    groupby='age(days)',legend=True,ax=ax)


# In[7]:


fig,ax=plt.subplots(figsize = (2,2))
ov.pl.cellproportion(adata=adata,celltype_clusters='age(days)',
                    groupby='clusters',groupby_li=['nIPC','Granule immature','Granule mature'],
                     legend=True,ax=ax)


# If you are interested in the changes in cell types in different groups, we recommend using a stacked area graph.

# In[8]:


fig,ax=plt.subplots(figsize = (2,2))
ov.pl.cellstackarea(adata=adata,celltype_clusters='age(days)',
                    groupby='clusters',groupby_li=['nIPC','Granule immature','Granule mature'],
                     legend=True,ax=ax)


# ## A collection of some interesting embedded plot
# 
# Our first presentation is an embedding map with the number and proportion of cell types. This graph visualises the low-dimensional representation of cells in addition to the number of cell proportions, etc. It should be noted that the cell proportions plotted on the left side may be distorted when there are too many cell types, and we would be grateful if anyone would be interested in fixing this bug.
# 
# **Function**: `ov.pl.embedding_celltype`: 
# - adata: the datasets of scRNA-seq
# - figsize: Note that we don't usually provide the ax parameter for combinatorial graphs, this is due to the fact that combinatorial graphs are made up of multiple axes, so the figsize parameter is more important, here we set it to `figsize=(7,4)`.
# - basis: he position on the plane should be set to `X_spatial` in spatial RNA-seq, `X_umap`,`X_tsne`,`X_mde` in scRNA-seq and should not be set to `X_pca`
# - celltype_key: Specify the colour to be optimised, which should be for one of the columns in adata.obs, noting that it should have the colour first, and that we can use ov.pl.embedding to colour the cell types. If there is no colour then colour blind optimisation colour will be used.
# - title: Note that the space entered in title is used to control the position.
# - celltype_range: Since our number of cell types is different in each data, we want to have the flexibility to control where the cell scale plot is drawn, here we set it to `(1,10)`. You can also tweak the observations yourself to find the parameter that best suits your data.
# - embedding_range: As with the positional parameters of the cell types, they need to be adjusted several times on their own for optimal results.

# In[9]:


ov.pl.embedding_celltype(adata,figsize=(7,4),basis='X_umap',
                            celltype_key='clusters',
                            title='            Cell type',
                            celltype_range=(1,10),
                            embedding_range=(4,10),)


# Sometimes we want to be able to circle a certain type of cell that we are interested in, and here we use convex polygons to achieve this, while the shape of the convex polygons may be optimised in future versions.
# 
# **Function**: `ov.pl.ConvexHull`: 
# - adata: the datasets of scRNA-seq
# - basis: he position on the plane should be set to `X_spatial` in spatial RNA-seq, `X_umap`,`X_tsne`,`X_mde` in scRNA-seq and should not be set to `X_pca`
# - cluster_key: Specify the celltype to be optimised, which should be for one of the columns in adata.obs, noting that it should have the colour first, and that we can use ov.pl.embedding to colour the cell types. If there is no colour then colour blind optimisation colour will be used.
# - hull_cluster: the target celltype to be circled.

# In[10]:


import matplotlib.pyplot as plt
fig,ax=plt.subplots(figsize = (4,4))

ov.pl.embedding(adata,
                basis='X_umap',
                color=['clusters'],
                frameon='small',
                show=False,
                ax=ax)

ov.pl.ConvexHull(adata,
                basis='X_umap',
                cluster_key='clusters',
                hull_cluster='Granule mature',
                ax=ax)


# Besides, if you don't want to plot convexhull, you can plot the contour instead. 
# 
# **Function**: `ov.pl.contour`: 
# - adata: the datasets of scRNA-seq
# - basis: he position on the plane should be set to `X_spatial` in spatial RNA-seq, `X_umap`,`X_tsne`,`X_mde` in scRNA-seq and should not be set to `X_pca`
# - groupby: Specify the celltype to be optimised, which should be for one of the columns in adata.obs, noting that it should have the colour first, and that we can use ov.pl.embedding to colour the cell types. If there is no colour then colour blind optimisation colour will be used.
# - clusters: the target celltype to be circled. 
# - colors: the color of the contour
# - linestyles: the linestyles of the contour
# - **kwargs: more kwargs could be found from `plt.contour`

# In[11]:


import matplotlib.pyplot as plt
fig,ax=plt.subplots(figsize = (4,4))

ov.pl.embedding(adata,
                basis='X_umap',
                color=['clusters'],
                frameon='small',
                show=False,
                ax=ax)

ov.pl.contour(ax=ax,adata=adata,groupby='clusters',clusters=['Granule immature','Granule mature'],
       basis='X_umap',contour_threshold=0.1,colors='#000000',
        linestyles='dashed',)


# In scanpy's default `embedding` plotting function, when we set legend=True, legend masking may occur. To solve this problem, we introduced `ov.pl.embedding_adjust` in omicverse to automatically adjust the position of the legend.
# 
# **Function**: `ov.pl.embedding_adjust`: 
# - adata: the datasets of scRNA-seq
# - basis: he position on the plane should be set to `X_spatial` in spatial RNA-seq, `X_umap`,`X_tsne`,`X_mde` in scRNA-seq and should not be set to `X_pca`
# - groupby: Specify the celltype to be optimised, which should be for one of the columns in adata.obs, noting that it should have the colour first, and that we can use ov.pl.embedding to colour the cell types. If there is no colour then colour blind optimisation colour will be used.
# - exclude: We can specify which cell types are not to be plotted, in this case we set it to `OL`
# - adjust_kwargs: We can manually specify the parameters of [adjustText](https://adjusttext.readthedocs.io/en/latest/), the specific parameters see the documentation of adjustText, it should be noted that we have to use dict to specify the parameters here.
# - text_kwargs: We can also specify the font colour manually by specifying the [text_kwargs](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.text.html) parameter

# In[12]:


from matplotlib import patheffects
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(4,4))

ov.pl.embedding(adata,
                  basis='X_umap',
                  color=['clusters'],
                   show=False, legend_loc=None, add_outline=False, 
                   frameon='small',legend_fontoutline=2,ax=ax
                 )

ov.pl.embedding_adjust(
    adata,
    groupby='clusters',
    exclude=("OL",),  
    basis='X_umap',
    ax=ax,
    adjust_kwargs=dict(arrowprops=dict(arrowstyle='-', color='black')),
    text_kwargs=dict(fontsize=12 ,weight='bold',
                     path_effects=[patheffects.withStroke(linewidth=2, foreground='w')] ),
)


# Sometimes we are interested in the distribution density of a certain class of cell types in a categorical variable, which is cumbersome to plot in the `scanpy` implementation, so we have simplified the implementation in omicverse and ensured the same plotting.
# 
# **Function**: `ov.pl.embedding_density`: 
# - adata: the datasets of scRNA-seq
# - basis: he position on the plane should be set to `X_spatial` in spatial RNA-seq, `X_umap`,`X_tsne`,`X_mde` in scRNA-seq and should not be set to `X_pca`
# - groupby: Specify the celltype to be optimised, which should be for one of the columns in adata.obs, noting that it should have the colour first, and that we can use ov.pl.embedding to colour the cell types. If there is no colour then colour blind optimisation colour will be used.
# - target_clusters: We can specify which cell types are to be plotted, in this case we set it to `Granule mature`
# - kwargs: other parameter can be found in `scanpy.pl.embedding`

# In[13]:


ov.pl.embedding_density(adata,
                 basis='X_umap',
                 groupby='clusters',
                 target_clusters='Granule mature',
                 frameon='small',
                show=False,cmap='RdBu_r',alpha=0.8)


# ## Bar graph with overlapping dots (Bar-dot) plot
# 
# In biological research, bardotplot plots are the most common class of graphs we use, but unfortunately, there is no direct implementation of plotting functions in either matplotlib, seaborn or scanpy. To compensate for this, we implement bardotplot plotting in omicverse and provide manual addition of p-values (it should be noted that manual addition refers to the manual addition of p-values for model fitting rather than making up p-values yourself).

# In[14]:


ov.single.geneset_aucell(adata,
                            geneset_name='Sox',
                            geneset=['Sox17', 'Sox4', 'Sox7', 'Sox18', 'Sox5'])


# In[15]:


ov.pl.embedding(adata,
                basis='X_umap',
                color=['Sox4'],
                frameon='small',
                show=False,)


# In[18]:


ov.pl.violin(adata,keys='Sox4',groupby='clusters',figsize=(6,3))


# **Function**: `ov.pl.embedding_density`: 
# - adata: the datasets of scRNA-seq
# - groupby: Specify the celltype to be optimised, which should be for one of the columns in adata.obs, noting that it should have the colour first, and that we can use ov.pl.embedding to colour the cell types. If there is no colour then colour blind optimisation colour will be used.
# - color: The size of the variable to be plotted, which can be a gene, stored in adata.var, or a cell value, stored in adata.obs.
# - bar_kwargs: We provide the parameters of the barplot for input, see the matplotlib documentation for more [details](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html)
# - scatter_kwargs: We also provide the parameters of the scatter for input, see the matplotlib documentation for more [details](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html)
# 
# **Function**: `ov.pl.add_palue`: 
# - ax: the axes of bardotplot
# - line_x1: The left side of the p-value line to be plotted
# - line_x2: The right side of the p-value line to be plotted|
# - line_y: The height of the p-value line to be plotted
# - text_y: How much above the p-value line is plotted text
# - text: the text of p-value, you can set `***` to instead `p<0.001`
# - fontsize: the fontsize of text
# - fontcolor: the color of text
# - horizontalalignment: the location of text

# In[19]:


fig, ax = plt.subplots(figsize=(6,2))
ov.pl.bardotplot(adata,groupby='clusters',color='Sox_aucell',figsize=(6,2),
           ax=ax,
          ylabel='Expression',
           bar_kwargs={'alpha':0.5,'linewidth':2,'width':0.6,'capsize':4},
           scatter_kwargs={'alpha':0.8,'s':10,'marker':'o'})

ov.pl.add_palue(ax,line_x1=3,line_x2=4,line_y=0.1,
          text_y=0.02,
          text='$p={}$'.format(round(0.001,3)),
          fontsize=11,fontcolor='#000000',
             horizontalalignment='center',)


# In[20]:


fig, ax = plt.subplots(figsize=(6,2))
ov.pl.bardotplot(adata,groupby='clusters',color='Sox17',figsize=(6,2),
           ax=ax,
          ylabel='Expression',xlabel='Cell Type',
           bar_kwargs={'alpha':0.5,'linewidth':2,'width':0.6,'capsize':4},
           scatter_kwargs={'alpha':0.8,'s':10,'marker':'o'})

ov.pl.add_palue(ax,line_x1=3,line_x2=4,line_y=2,
          text_y=0.2,
          text='$p={}$'.format(round(0.001,3)),
          fontsize=11,fontcolor='#000000',
             horizontalalignment='center',)


# ## Boxplot with jitter points 
# A box plot, also known as a box-and-whisker plot, is a graphical representation used to display the distribution and summary statistics of a dataset. It provides a concise and visual way to understand the central tendency, spread, and potential outliers in the data.

# **Function**: `ov.pl.single_group_boxplot`: 
#  
# - adata (AnnData object): The data object containing the information for plotting. 
# - groupby (str): The variable used for grouping the data
# - color (str): The variable used for coloring the data points.
# - type_color_dict (dict): A dictionary mapping group categories to specific colors.  
# - scatter_kwargs (dict): Additional keyword arguments for customizing the scatter plot.  
# - ax (matplotlib.axes.Axes): A pre-existing axes object for plotting (optional).  (optional).(optional).
#     

# In[21]:


import pandas as pd
import seaborn as sns
#sns.set_style('white')

ov.pl.single_group_boxplot(adata,groupby='clusters',
             color='Sox_aucell',
             type_color_dict=dict(zip(pd.Categorical(adata.obs['clusters']).categories, adata.uns['clusters_colors'])),
             x_ticks_plot=True,
             figsize=(5,2),
             kruskal_test=True,
             ylabel='Sox_aucell',
             legend_plot=False,
             bbox_to_anchor=(1,1),
             title='Expression',
             scatter_kwargs={'alpha':0.8,'s':10,'marker':'o'},
             point_number=15,
             sort=False,
             save=False,
             )
plt.grid(False)
plt.xticks(rotation=90,fontsize=12)


# ## Complexheatmap
# 
# A complex heatmap, also known as a clustered heatmap, is a data visualization technique used to represent complex relationships and patterns in multivariate data. It combines several elements, including clustering, color mapping, and hierarchical organization, to provide a comprehensive view of data across multiple dimensions. 

# **Function**: `ov.pl.single_group_boxplot`: 
#  
# - adata (AnnData): Annotated data object containing single-cell RNA-seq data.
# - groupby (str, optional): Grouping variable for the heatmap. Default is ''.
# - figsize (tuple, optional): Figure size. Default is (6, 10).
# - layer (str, optional): Data layer to use. Default is None.
# - use_raw (bool, optional): Whether to use the raw data. Default is False.
# - var_names (list or None, optional): List of genes to include in the heatmap. Default is None.
# - gene_symbols (None, optional): Not used in the function.
# - standard_scale (str, optional): Method for standardizing values. Options: 'obs', 'var', None. Default is None.
# - col_color_bars (dict, optional): Dictionary mapping columns types to colors.
# - col_color_labels (dict, optional): Dictionary mapping column labels to colors.
# - left_color_bars (dict, optional): Dictionary mapping left types to colors.
# - left_color_labels (dict, optional): Dictionary mapping left labels to colors.
# - right_color_bars (dict, optional): Dictionary mapping right types to colors.
# - right_color_labels (dict, optional): Dictionary mapping right labels to colors.
# - marker_genes_dict (dict, optional): Dictionary mapping cell types to marker genes.
# - index_name (str, optional): Name for the index column in the melted DataFrame. Default is ''.
# - value_name (str, optional): Name for the value column in the melted DataFrame. Default is ''.
# - cmap (str, optional): Colormap for the heatmap. Default is 'parula'.
# - xlabel (str, optional): X-axis label. Default is ''.
# - ylabel (str, optional): Y-axis label. Default is ''.
# - label (str, optional): Label for the plot. Default is ''.
# - save (bool, optional): Whether to save the plot. Default is False.
# - save_pathway (str, optional): File path for saving the plot. Default is ''.
# - legend_gap (int, optional): Gap between legend items. Default is 7.
# - legend_hpad (int, optional): Horizontal space between the heatmap and legend, default is 2 [mm].
# - show (bool, optional): Whether to display the plot. Default is False.
# 
#     

# In[22]:


import pandas as pd
marker_genes_dict = {
    'Sox':['Sox4', 'Sox7', 'Sox18', 'Sox5'],
}

color_dict = {'Sox':'#EFF3D8',}

gene_color_dict = {}
gene_color_dict_black = {}
for cell_type, genes in marker_genes_dict.items():
    cell_type_color = color_dict.get(cell_type)
    for gene in genes:
        gene_color_dict[gene] = cell_type_color
        gene_color_dict_black[gene] = '#000000'

cm = ov.pl.complexheatmap(adata,
                       groupby ='clusters',
                       figsize =(5,2),
                       layer = None,
                       use_raw = False,
                       standard_scale = 'var',
                       col_color_bars = dict(zip(pd.Categorical(adata.obs['clusters']).categories, adata.uns['clusters_colors'])),
                       col_color_labels = dict(zip(pd.Categorical(adata.obs['clusters']).categories, adata.uns['clusters_colors'])),
                       left_color_bars = color_dict,
                       left_color_labels = None,
                       right_color_bars = color_dict,
                       right_color_labels = gene_color_dict_black,
                       marker_genes_dict = marker_genes_dict,
                       cmap = 'coolwarm', #parula,jet
                       legend_gap = 15,
                       legend_hpad = 0,
                       left_add_text = True,
                       col_split_gap = 2,
                       row_split_gap = 1,
                       col_height = 6,
                       left_height = 4,
                       right_height = 6,
                       col_split = None,
                       row_cluster = False,
                       col_cluster = False,
                       value_name='Gene',
                       xlabel = "Expression of selected genes",
                       label = 'Gene Expression',
                       save = True,
                       show = False,
                       legend = False,
                       plot_legend = False,
                      #save_pathway = "complexheatmap.png",
                            )


# ## Marker gene plot
# 
# In single-cell analysis, a marker gene heatmap is a powerful visualization tool that helps researchers to understand the expression patterns of specific marker genes across different cell populations. Here we provide `ov.pl.marker_heatmap` for visualizing the patterns of marker genes.

# We first preprocess the data and define the dictionary of cell type and marker gene.
# **Please ensure that each gene in the dictionary appears only once** (i.e. different cells cannot have the same marker gene, otherwise an error will be reported).

# In[23]:


adata=ov.pp.preprocess(adata,mode='shiftlog|pearson',n_HVGs=2000,)

marker_genes_dict = {'Granule immature': ['Sepw1', 'Camk2b', 'Cnih2'],
 'Radial Glia-like': ['Dbi', 'Fabp7', 'Aldoc'],
 'Granule mature': ['Malat1', 'Rasl10a', 'Ppp3ca'],
 'Neuroblast': ['Igfbpl1', 'Tubb2b', 'Tubb5'],
 'Microglia': ['Lgmn', 'C1qa', 'C1qb'],
 'Cajal Retzius': ['Diablo', 'Ramp1', 'Stmn1'],
 'OPC': ['Olig1', 'C1ql1', 'Pllp'],
 'Cck-Tox': ['Tshz2', 'Cck', 'Nap1l5'],
 'GABA': ['Gad2', 'Gad1', 'Snhg11'],
 'Endothelial': ['Sparc', 'Myl12a', 'Itm2a'],
 'Astrocytes': ['Apoe',  'Atp1a2'],
 'OL': ['Plp1', 'Mog', 'Mag'],
 'Mossy': ['Arhgdig', 'Camk4'],
 'nIPC': ['Hmgn2', 'Ptma', 'H2afz']}


# **Function**: `ov.pl.marker_heatmap`: 
#  
# - adata: AnnData object
#         Annotated data matrix.
# - marker_genes_dict: dict
#         A dictionary containing the marker genes for each cell type.
# - groupby: str
#         The key in adata.obs that will be used for grouping the cells.
# - color_map: str
#         The color map to use for the value of heatmap.
# - use_raw: bool
#         Whether to use the raw data of AnnDta object for plotting.
# - standard_scale: str
#         The standard scale for the heatmap.
# - expression_cutoff: float
#         The cutoff value for the expression of genes.
# - bbox_to_anchor: tuple
#         The position of the legend bbox (x, y) in axes coordinates.
# - figsize: tuple
#         The size of the plot figure in inches (width, height).
# - spines: bool
#         Whether to show the spines of the plot.
# - fontsize: int
#         The font size of the text in the plot.
# - show_rownames: bool
#         Whether to show the row names in the heatmap.
# - show_colnames: bool
#         Whether to show the column names in the heatmap.
# - save_pathway: str 
#         The file path for saving the plot.
# - ax: matplotlib.axes.Axes
#         A pre-existing axes object for plotting (optional).

# In[24]:


ov.pl.marker_heatmap(
    adata,
    marker_genes_dict,
    groupby='clusters',
    color_map="RdBu_r",
    use_raw=False,
    standard_scale="var",
    expression_cutoff=0.0,
    fontsize=12,
    bbox_to_anchor=(7, -2),
    figsize=(8.5,4),
    spines=False,
    show_rownames=False,
    show_colnames=True,
)