File size: 7,760 Bytes
2999286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python
# coding: utf-8

# # Inference of MetaCell from Single-Cell RNA-seq
# 
# Metacells are cell groupings derived from single-cell sequencing data that represent highly granular, distinct cell states. Here, we present single-cell aggregation of cell-states (SEACells), an algorithm for identifying metacells; overcoming the sparsity of single-cell data, while retaining heterogeneity obscured by traditional cell clustering.
# 
# Paper: [SEACells: Inference of transcriptional and epigenomic cellular states from single-cell genomics data](https://www.nature.com/articles/s41587-023-01716-9)
# 
# Code: https://github.com/dpeerlab/SEACells
# 

# In[1]:


import omicverse as ov
import scanpy as sc
import scvelo as scv

ov.plot_set()


# ## Data preprocessed
# 
# We need to normalized and scale the data at first.

# In[3]:


adata = scv.datasets.pancreas()
adata


# In[4]:


#quantity control
adata=ov.pp.qc(adata,
              tresh={'mito_perc': 0.20, 'nUMIs': 500, 'detected_genes': 250},
              mt_startswith='mt-')
#normalize and high variable genes (HVGs) calculated
adata=ov.pp.preprocess(adata,mode='shiftlog|pearson',n_HVGs=2000,)

#save the whole genes and filter the non-HVGs
adata.raw = adata
adata = adata[:, adata.var.highly_variable_features]

#scale the adata.X
ov.pp.scale(adata)

#Dimensionality Reduction
ov.pp.pca(adata,layer='scaled',n_pcs=50)


# ## Constructing a metacellular object
# 
# We can use `ov.single.MetaCell` to construct a metacellular object to train the SEACells model, the arguments can be found in below.
# 
# - :param ad: (AnnData) annotated data matrix
# - :param build_kernel_on: (str) key corresponding to matrix in ad.obsm which is used to compute kernel for metacells
#                         Typically 'X_pca' for scRNA or 'X_svd' for scATAC
# - :param n_SEACells: (int) number of SEACells to compute
# - :param use_gpu: (bool) whether to use GPU for computation
# - :param verbose: (bool) whether to suppress verbose program logging
# - :param n_waypoint_eigs: (int) number of eigenvectors to use for waypoint initialization
# - :param n_neighbors: (int) number of nearest neighbors to use for graph construction
# - :param convergence_epsilon: (float) convergence threshold for Franke-Wolfe algorithm
# - :param l2_penalty: (float) L2 penalty for Franke-Wolfe algorithm
# - :param max_franke_wolfe_iters: (int) maximum number of iterations for Franke-Wolfe algorithm
# - :param use_sparse: (bool) whether to use sparse matrix operations. Currently only supported for CPU implementation.

# In[5]:


meta_obj=ov.single.MetaCell(adata,use_rep='scaled|original|X_pca',
                            n_metacells=None,
                           use_gpu='cuda:0')


# In[6]:


get_ipython().run_cell_magic('time', '', 'meta_obj.initialize_archetypes()\n')


# ## Train and save the model

# In[7]:


get_ipython().run_cell_magic('time', '', 'meta_obj.train(min_iter=10, max_iter=50)\n')


# In[9]:


meta_obj.save('seacells/model.pkl')


# In[6]:


meta_obj.load('seacells/model.pkl')


# ## Predicted the metacells
# 
# we can use `predicted` to predicted the metacells of raw scRNA-seq data. There are two method can be selected, one is `soft`, the other is `hard`. 
# 
# In the `soft` method, Aggregates cells within each SEACell, summing over all raw data x assignment weight for all cells belonging to a SEACell. Data is un-normalized and pseudo-raw aggregated counts are stored in .layers['raw']. Attributes associated with variables (.var) are copied over, but relevant per SEACell attributes must be manually copied, since certain attributes may need to be summed, or averaged etc, depending on the attribute.
# 
# In the `hard` method, Aggregates cells within each SEACell, summing over all raw data for all cells belonging to a SEACell. Data is unnormalized and raw aggregated counts are stored .layers['raw']. Attributes associated with variables (.var) are copied over, but relevant per SEACell attributes must be manually copied, since certain attributes may need to be summed, or averaged etc, depending on the attribute.

# In[10]:


ad=meta_obj.predicted(method='soft',celltype_label='clusters',
                     summarize_layer='lognorm')


# ## Benchmarking
# 
# Benchmarking metrics were computed for each metacell for all combinations of data modality, dataset and method. Cell type purity was used to assess the quality of PBMC metacells. Methods were compared using the Wilcoxon rank-sum test. We note that this test might possibly inflate significance due to the dependency between metacells, but it nonetheless provides an estimate of the direction of difference. Top-performing metacell approaches should have scores that are low on compactness, high on separation and high on cell type purity 

# In[11]:


SEACell_purity = meta_obj.compute_celltype_purity('clusters')
separation = meta_obj.separation(use_rep='scaled|original|X_pca',nth_nbr=1)
compactness = meta_obj.compactness(use_rep='scaled|original|X_pca')


# In[12]:


import seaborn as sns
import matplotlib.pyplot as plt
ov.plot_set()
fig, axes = plt.subplots(1,3,figsize=(4,4))
sns.boxplot(data=SEACell_purity, y='clusters_purity',ax=axes[0],
           color=ov.utils.blue_color[3])
sns.boxplot(data=compactness, y='compactness',ax=axes[1],
           color=ov.utils.blue_color[4])
sns.boxplot(data=separation, y='separation',ax=axes[2],
           color=ov.utils.blue_color[4])
plt.tight_layout()
plt.suptitle('Evaluate of MetaCells',fontsize=13,y=1.05)
for ax in axes:
    ax.grid(False)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['bottom'].set_visible(True)
    ax.spines['left'].set_visible(True)


# In[13]:


import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(4,4))
ov.pl.embedding(
    meta_obj.adata,
    basis="X_umap",
    color=['clusters'],
    frameon='small',
    title="Meta cells",
    #legend_loc='on data',
    legend_fontsize=14,
    legend_fontoutline=2,
    size=10,
    ax=ax,
    alpha=0.2,
    #legend_loc='', 
    add_outline=False, 
    #add_outline=True,
    outline_color='black',
    outline_width=1,
    show=False,
    #palette=ov.utils.blue_color[:],
    #legend_fontweight='normal'
)
ov.single.plot_metacells(ax,meta_obj.adata,color='#CB3E35',
                                  )


# ## Get the raw obs value from adata
# 
# There are times when we compute some floating point type data such as pseudotime on the raw single cell data. We want to get the result of the original data on the metacell, in this case, we can use the `ov.single` function to get it.
# 
# Note that the type parameter supports `str`,`max`,`min`,`mean`.

# In[14]:


ov.single.get_obs_value(ad,adata,groupby='S_score',
                       type='mean')
ad.obs.head()


# ## Visualize the MetaCells

# In[15]:


import scanpy as sc
ad.raw=ad.copy()
sc.pp.highly_variable_genes(ad, n_top_genes=2000, inplace=True)
ad=ad[:,ad.var.highly_variable]


# In[16]:


ov.pp.scale(ad)
ov.pp.pca(ad,layer='scaled',n_pcs=30)
ov.pp.neighbors(ad, n_neighbors=15, n_pcs=20,
               use_rep='scaled|original|X_pca')


# In[17]:


ov.pp.umap(ad)


# We want the metacells to take on the same colours as the original data, a noteworthy fact is that the colours of the original data are stored in the `adata.uns['_colors']`

# In[18]:


ad.obs['celltype']=ad.obs['celltype'].astype('category')
ad.obs['celltype']=ad.obs['celltype'].cat.reorder_categories(adata.obs['clusters'].cat.categories)
ad.uns['celltype_colors']=adata.uns['clusters_colors']


# In[19]:


ov.pl.embedding(ad, basis='X_umap',
                color=["celltype","S_score"],
                frameon='small',cmap='RdBu_r',
               wspace=0.5)


# In[ ]: