File size: 13,964 Bytes
2999286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#!/usr/bin/env python
# coding: utf-8

# # Preprocessing the data of scRNA-seq with omicverse
# 
# The count table, a numeric matrix of genes × cells, is the basic input data structure in the analysis of single-cell RNA-sequencing data. A common preprocessing step is to adjust the counts for variable sampling efficiency and to transform them so that the variance is similar across the dynamic range. 
# 
# Suitable methods to preprocess the scRNA-seq is important. Here, we introduce some preprocessing step to help researchers can perform downstream analysis easyier.
# 
# User can compare our tutorial with [scanpy'tutorial](https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html) to learn how to use omicverse well
# 
# Colab_Reproducibility:https://colab.research.google.com/drive/1DXLSls_ppgJmAaZTUvqazNC_E7EDCxUe?usp=sharing

# In[1]:


import omicverse as ov
import scanpy as sc
ov.ov_plot_set()


# The data consist of 3k PBMCs from a Healthy Donor and are freely available from 10x Genomics ([here](http://cf.10xgenomics.com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz) from this [webpage](https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k)). On a unix system, you can uncomment and run the following to download and unpack the data. The last line creates a directory for writing processed data.

# In[2]:


# !mkdir data
# !wget http://cf.10xgenomics.com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz -O data/pbmc3k_filtered_gene_bc_matrices.tar.gz
# !cd data; tar -xzf pbmc3k_filtered_gene_bc_matrices.tar.gz
# !mkdir write


# In[3]:


adata = sc.read_10x_mtx(
    'data/filtered_gene_bc_matrices/hg19/',  # the directory with the `.mtx` file
    var_names='gene_symbols',                # use gene symbols for the variable names (variables-axis index)
    cache=True)                              # write a cache file for faster subsequent reading
adata


# In[4]:


adata.var_names_make_unique()
adata.obs_names_make_unique()


# ## Preprocessing
# 
# ### Quantity control
# 
# For single-cell data, we require quality control prior to analysis, including the removal of cells containing double cells, low-expressing cells, and low-expressing genes. In addition to this, we need to filter based on mitochondrial gene ratios, number of transcripts, number of genes expressed per cell, cellular Complexity, etc. For a detailed description of the different QCs please see the document: https://hbctraining.github.io/scRNA-seq/lessons/04_SC_quality_control.html

# In[5]:


adata=ov.pp.qc(adata,
              tresh={'mito_perc': 0.05, 'nUMIs': 500, 'detected_genes': 250})
adata


# ### High variable Gene Detection
# 
# Here we try to use Pearson's method to calculate highly variable genes. This is the method that is proposed to be superior to ordinary normalisation. See [Article](https://www.nature.com/articles/s41592-023-01814-1#MOESM3) in *Nature Method* for details.
# 

# Sometimes we need to recover the original counts for some single-cell calculations, but storing them in the layer layer may result in missing data, so we provide two functions here, a store function and a release function, to save the original data.
# 
# We set `layers=counts`, the counts will be stored in `adata.uns['layers_counts']`

# In[6]:


ov.utils.store_layers(adata,layers='counts')
adata


# normalize|HVGs:We use | to control the preprocessing step, | before for the normalisation step, either `shiftlog` or `pearson`, and | after for the highly variable gene calculation step, either `pearson` or `seurat`. Our default is `shiftlog|pearson`.
# 
# - if you use `mode`=`shiftlog|pearson` you need to set `target_sum=50*1e4`, more people like to se `target_sum=1e4`, we test the result think 50*1e4 will be better
# - if you use `mode`=`pearson|pearson`, you don't need to set `target_sum`
# 
# <div class="admonition warning">
#   <p class="admonition-title">Note</p>
#   <p>
#     if the version of `omicverse` lower than `1.4.13`, the mode can only be set between `scanpy` and `pearson`.
#   </p>
# </div>
# 

# In[7]:


adata=ov.pp.preprocess(adata,mode='shiftlog|pearson',n_HVGs=2000,)
adata


# Set the .raw attribute of the AnnData object to the normalized and logarithmized raw gene expression for later use in differential testing and visualizations of gene expression. This simply freezes the state of the AnnData object.

# In[8]:


adata.raw = adata
adata = adata[:, adata.var.highly_variable_features]
adata


# We find that the adata.X matrix is normalized at this point, including the data in raw, but we want to get the unnormalized data, so we can use the retrieve function `ov.utils.retrieve_layers`

# In[9]:


adata_counts=adata.copy()
ov.utils.retrieve_layers(adata_counts,layers='counts')
print('normalize adata:',adata.X.max())
print('raw count adata:',adata_counts.X.max())


# In[10]:


adata_counts


# If we wish to recover the original count matrix at the whole gene level, we can try the following code

# In[11]:


adata_counts=adata.raw.to_adata().copy()
ov.utils.retrieve_layers(adata_counts,layers='counts')
print('normalize adata:',adata.X.max())
print('raw count adata:',adata_counts.X.max())
adata_counts


# ## Principal component analysis
# 
# In contrast to scanpy, we do not directly scale the variance of the original expression matrix, but store the results of the variance scaling in the layer, due to the fact that scale may cause changes in the data distribution, and we have not found scale to be meaningful in any scenario other than a principal component analysis

# In[12]:


ov.pp.scale(adata)
adata


# If you want to perform pca in normlog layer, you can set `layer`=`normlog`, but we think scaled is necessary in PCA.

# In[13]:


ov.pp.pca(adata,layer='scaled',n_pcs=50)
adata


# In[14]:


adata.obsm['X_pca']=adata.obsm['scaled|original|X_pca']
ov.utils.embedding(adata,
                  basis='X_pca',
                  color='CST3',
                  frameon='small')


# ## Embedding the neighborhood graph
# 
# We suggest embedding the graph in two dimensions using UMAP (McInnes et al., 2018), see below. It is potentially more faithful to the global connectivity of the manifold than tSNE, i.e., it better preserves trajectories. In some ocassions, you might still observe disconnected clusters and similar connectivity violations. They can usually be remedied by running:

# In[15]:


sc.pp.neighbors(adata, n_neighbors=15, n_pcs=50,
               use_rep='scaled|original|X_pca')


# To visualize the PCA’s embeddings, we use the `pymde` package wrapper in omicverse. This is an alternative to UMAP that is GPU-accelerated.

# In[16]:


adata.obsm["X_mde"] = ov.utils.mde(adata.obsm["scaled|original|X_pca"])
adata


# In[17]:


ov.utils.embedding(adata,
                basis='X_mde',
                color='CST3',
                frameon='small')


# You also can use `umap` to visualize the neighborhood graph

# In[18]:


sc.tl.umap(adata)


# In[19]:


ov.utils.embedding(adata,
                basis='X_umap',
                color='CST3',
                frameon='small')


# ## Clustering the neighborhood graph
# 
# As with Seurat and many other frameworks, we recommend the Leiden graph-clustering method (community detection based on optimizing modularity) by Traag *et al.* (2018). Note that Leiden clustering directly clusters the neighborhood graph of cells, which we already computed in the previous section.

# In[20]:


sc.tl.leiden(adata)


# We redesigned the visualisation of embedding to distinguish it from scanpy's embedding by adding the parameter `fraemon='small'`, which causes the axes to be scaled with the colourbar

# In[21]:


ov.utils.embedding(adata,
                basis='X_mde',
                color=['leiden', 'CST3', 'NKG7'],
                frameon='small')


# We also provide a boundary visualisation function `ov.utils.plot_ConvexHull` to visualise specific clusters.
# 
# Arguments: 
# - color: if None will use the color of clusters
# - alpha: default is 0.2

# In[23]:


import matplotlib.pyplot as plt
fig,ax=plt.subplots( figsize = (4,4))

ov.utils.embedding(adata,
                basis='X_mde',
                color=['leiden'],
                frameon='small',
                show=False,
                ax=ax)

ov.utils.plot_ConvexHull(adata,
                basis='X_mde',
                cluster_key='leiden',
                hull_cluster='0',
                ax=ax)


# If you have too many labels, e.g. too many cell types, and you are concerned about cell overlap, then consider trying the `ov.utils.gen_mpl_labels` function, which improves text overlap.
# In addition, we make use of the `patheffects` function, which makes our text have outlines
# 
# - adjust_kwargs: it could be found in package `adjusttext`
# - text_kwargs: it could be found in class `plt.texts`

# In[67]:


from matplotlib import patheffects
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(4,4))

ov.utils.embedding(adata,
                  basis='X_mde',
                  color=['leiden'],
                   show=False, legend_loc=None, add_outline=False, 
                   frameon='small',legend_fontoutline=2,ax=ax
                 )

ov.utils.gen_mpl_labels(
    adata,
    'leiden',
    exclude=("None",),  
    basis='X_mde',
    ax=ax,
    adjust_kwargs=dict(arrowprops=dict(arrowstyle='-', color='black')),
    text_kwargs=dict(fontsize= 12 ,weight='bold',
                     path_effects=[patheffects.withStroke(linewidth=2, foreground='w')] ),
)


# In[47]:


marker_genes = ['IL7R', 'CD79A', 'MS4A1', 'CD8A', 'CD8B', 'LYZ', 'CD14',
                'LGALS3', 'S100A8', 'GNLY', 'NKG7', 'KLRB1',
                'FCGR3A', 'MS4A7', 'FCER1A', 'CST3', 'PPBP']


# In[48]:


sc.pl.dotplot(adata, marker_genes, groupby='leiden',
             standard_scale='var');


# ## Finding marker genes
# 
# Let us compute a ranking for the highly differential genes in each cluster. For this, by default, the .raw attribute of AnnData is used in case it has been initialized before. The simplest and fastest method to do so is the t-test.

# In[49]:


sc.tl.dendrogram(adata,'leiden',use_rep='scaled|original|X_pca')
sc.tl.rank_genes_groups(adata, 'leiden', use_rep='scaled|original|X_pca',
                        method='t-test',use_raw=False,key_added='leiden_ttest')
sc.pl.rank_genes_groups_dotplot(adata,groupby='leiden',
                                cmap='Spectral_r',key='leiden_ttest',
                                standard_scale='var',n_genes=3)


# cosg is also considered to be a better algorithm for finding marker genes. Here, omicverse provides the calculation of cosg
# 
# Paper: [Accurate and fast cell marker gene identification with COSG](https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bbab579/6511197?redirectedFrom=fulltext)
# 
# Code: https://github.com/genecell/COSG
# 

# In[50]:


sc.tl.rank_genes_groups(adata, groupby='leiden', 
                        method='t-test',use_rep='scaled|original|X_pca',)
ov.single.cosg(adata, key_added='leiden_cosg', groupby='leiden')
sc.pl.rank_genes_groups_dotplot(adata,groupby='leiden',
                                cmap='Spectral_r',key='leiden_cosg',
                                standard_scale='var',n_genes=3)


# ## Other plotting
# 
# Next, let's try another chart, which we call the Stacked Volcano Chart. We need to prepare two dictionaries, a `data_dict` and a `color_dict`, both of which have the same key requirements.
# 
# For `data_dict`. we require the contents within each key to be a DataFrame containing ['names','logfoldchanges','pvals_adj'], where names stands for gene names, logfoldchanges stands for differential expression multiplicity, pvals_adj stands for significance p-value
# 

# In[51]:


data_dict={}
for i in adata.obs['leiden'].cat.categories:
    data_dict[i]=sc.get.rank_genes_groups_df(adata, group=i, key='leiden_ttest',
                                            pval_cutoff=None,log2fc_min=None)


# In[65]:


data_dict.keys()


# In[64]:


data_dict[i].head()


# For `color_dict`, we require that the colour to be displayed for the current key is stored within each key.`

# In[63]:


type_color_dict=dict(zip(adata.obs['leiden'].cat.categories,
                         adata.uns['leiden_colors']))
type_color_dict


# There are a number of parameters available here for us to customise the settings. Note that when drawing stacking_vol with omicverse version less than 1.4.13, there is a bug that the vertical coordinate is constant at [-15,15], so we have added some code in this tutorial for visualisation.
# 
# - data_dict: dict, in each key, there is a dataframe with columns of ['logfoldchanges','pvals_adj','names']
# - color_dict: dict, in each key, there is a color for each omic
# - pval_threshold: float, pvalue threshold for significant genes
# - log2fc_threshold: float, log2fc threshold for significant genes
# - figsize: tuple, figure size
# - sig_color: str, color for significant genes
# - normal_color: str, color for non-significant genes
# - plot_genes_num: int, number of genes to plot
# - plot_genes_fontsize: int, fontsize for gene names
# - plot_genes_weight: str, weight for gene names

# In[62]:


fig,axes=ov.utils.stacking_vol(data_dict,type_color_dict,
            pval_threshold=0.01,
            log2fc_threshold=2,
            figsize=(8,4),
            sig_color='#a51616',
            normal_color='#c7c7c7',
            plot_genes_num=2,
            plot_genes_fontsize=6,
            plot_genes_weight='bold',
            )

#The following code will be removed in future
y_min,y_max=0,0
for i in data_dict.keys():
    y_min=min(y_min,data_dict[i]['logfoldchanges'].min())
    y_max=max(y_max,data_dict[i]['logfoldchanges'].max())
for i in adata.obs['leiden'].cat.categories:
    axes[i].set_ylim(y_min,y_max)
plt.suptitle('Stacking_vol',fontsize=12)   


# In[ ]: