Spaces:
Sleeping
Sleeping
File size: 16,817 Bytes
2999286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
#!/usr/bin/env python # coding: utf-8 # # Deconvolution spatial transcriptomic without scRNA-seq # # This is a tutorial on an example real Spatial Transcriptomics (ST) data (CID44971_TNBC) from Wu et al., 2021. Raw tutorial could be found in https://starfysh.readthedocs.io/en/latest/notebooks/Starfysh_tutorial_real.html # # # Starfysh performs cell-type deconvolution followed by various downstream analyses to discover spatial interactions in tumor microenvironment. Specifically, Starfysh looks for anchor spots (presumably with the highest compositions of one given cell type) informed by user-provided gene signatures ([see example](https://drive.google.com/file/d/1AXWQy_mwzFEKNjAdrJjXuegB3onxJoOM/view?usp=share_link)) as priors to guide the deconvolution inference, which further enables downstream analyses such as sample integration, spatial hub characterization, cell-cell interactions, etc. This tutorial focuses on the deconvolution task. Overall, Starfysh provides the following options: # # At omicverse, we have made the following improvements: # - Easier visualization, you can use omicverse unified visualization for scientific mapping # - Reduce installation dependency errors, we optimized the automatic selection of different packages, you don't need to install too many extra packages and cause conflicts. # # **Base feature**: # # - Spot-level deconvolution with expected cell types and corresponding annotated signature gene sets (default) # # **Optional**: # # - Archetypal Analysis (AA): # # *If gene signatures are not provided* # # - Unsupervised cell type annotation # # *If gene signatures are provided but require refinement*: # # - Novel cell type / cell state discovery (complementary to known cell types from the *signatures*) # - Refine known marker genes by appending archetype-specific differentially expressed genes, and update anchor spots accordingly # # - Product-of-Experts (PoE) integration # # Multi-modal integrative predictions with expression & histology image by leverging additional side information (e.g. cell density) from H&E image. # # He, S., Jin, Y., Nazaret, A. et al. # Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor–immune hubs. # Nat Biotechnol (2024). # https://doi.org/10.1038/s41587-024-02173-8 # In[1]: import scanpy as sc import omicverse as ov ov.plot_set() # In[2]: from omicverse.externel.starfysh import (AA, utils, plot_utils, post_analysis) from omicverse.externel.starfysh import _starfysh as sf_model # ### (1). load data and marker genes # # File Input: # - Spatial transcriptomics # - Count matrix: `adata` # - (Optional): Paired histology & spot coordinates: `img`, `map_info` # # - Annotated signatures (marker genes) for potential cell types: `gene_sig` # # Starfysh is built upon scanpy and Anndata. The common ST/Visium data sample folder consists a expression count file (usually `filtered_featyur_bc_matrix.h5`), and a subdirectory with corresponding H&E image and spatial information, as provided by Visium platform. # # For example, our example real ST data has the following structure: # ``` # ├── data_folder # signature.csv # # ├── CID44971: # \__ filtered_feature_bc_mactrix.h5 # # ├── spatial: # \__ aligned_fiducials.jpg # detected_tissue_image.jpg # scalefactors_json.json # tissue_hires_image.png # tissue_lowres_image.png # tissue_positions_list.csv # ``` # # For data that doesn't follow the common visium data structure (e.g. missing `filtered_featyur_bc_matrix.h5` or the given `.h5ad` count matrix file lacks spatial metadata), please construct the data as Anndata synthesizing information as the example simulated data shows: # [Note]: If you’re running this tutorial locally, please download the sample [data](https://drive.google.com/drive/folders/1RIp0Z2eF1m8Ortx0sgB4z5g5ISsRFzJ4?usp=share_link) and [signature gene sets](https://drive.google.com/file/d/1AXWQy_mwzFEKNjAdrJjXuegB3onxJoOM/view?usp=share_link), and save it in the relative path `data/star_data` (otherwise please modify the data_path defined in the cell below): # In[3]: # Specify data paths data_path = 'data/star_data' sample_id = 'CID44971_TNBC' sig_name = 'bc_signatures_version_1013.csv' # In[4]: # Load expression counts and signature gene sets adata, adata_normed = utils.load_adata(data_folder=data_path, sample_id=sample_id, # sample id n_genes=2000 # number of highly variable genes to keep ) # In[5]: import pandas as pd import os gene_sig = pd.read_csv(os.path.join(data_path, sig_name)) gene_sig = utils.filter_gene_sig(gene_sig, adata.to_df()) gene_sig.head() # **If there's no input signature gene sets, Starfysh defines "archetypal marker genes" as *signatures*. Please refer to the following code snippet and see details in section (3).** # # ```Python # aa_model = AA.ArchetypalAnalysis(adata_orig=adata_normed) # archetype, arche_dict, major_idx, evs = aa_model.compute_archetypes(r=40) # gene_sig = aa_model.find_markers(n_markers=30, display=False) # gene_sig = utils.filter_gene_sig(gene_sig, adata.to_df()) # gene_sig.head() # ``` # In[6]: # Load spatial information img_metadata = utils.preprocess_img(data_path, sample_id, adata_index=adata.obs.index, #hchannel=False ) img, map_info, scalefactor = img_metadata['img'], img_metadata['map_info'], img_metadata['scalefactor'] umap_df = utils.get_umap(adata, display=True) # In[7]: import matplotlib.pyplot as plt plt.figure(figsize=(6, 6), dpi=80) plt.imshow(img) # In[8]: map_info.head() # ### (2). Preprocessing (finding anchor spots) # - Identify anchor spot locations. # # Instantiate parameters for Starfysh model training: # - Raw & normalized counts after taking highly variable genes # - filtered signature genes # - library size & spatial smoothed library size (log-transformed) # - Anchor spot indices (`anchors_df`) for each cell type & their signature means (`sig_means`) # # In[ ]: # Parameters for training visium_args = utils.VisiumArguments(adata, adata_normed, gene_sig, img_metadata, n_anchors=60, window_size=3, sample_id=sample_id ) adata, adata_normed = visium_args.get_adata() anchors_df = visium_args.get_anchors() # In[10]: adata.obs['log library size']=visium_args.log_lib adata.obs['windowed log library size']=visium_args.win_loglib # In[11]: sc.pl.spatial(adata, cmap='magma', # show first 8 cell types color='log library size', ncols=4, size=1.3, img_key='hires', #palette=Layer_color # limit color scale at 99.2% quantile of cell abundance #vmin=0, vmax='p99.2' ) # In[12]: sc.pl.spatial(adata, cmap='magma', # show first 8 cell types color='windowed log library size', ncols=4, size=1.3, img_key='hires', #palette=Layer_color # limit color scale at 99.2% quantile of cell abundance #vmin=0, vmax='p99.2' ) # plot raw gene expression: # In[13]: sc.pl.spatial(adata, cmap='magma', # show first 8 cell types color='IL7R', ncols=4, size=1.3, img_key='hires', #palette=Layer_color # limit color scale at 99.2% quantile of cell abundance #vmin=0, vmax='p99.2' ) # In[14]: plot_utils.plot_anchor_spots(umap_df, visium_args.pure_spots, visium_args.sig_mean, bbox_x=2 ) # ### (3). Optional: Archetypal Analysis # Overview: # If users don't provide annotated gene signature sets with cell types, Starfysh identifies candidates for cell types via archetypal analysis (AA). The underlying assumption is that the geometric "extremes" are identified as the purest cell types, whereas all other spots are mixture of the "archetypes". If the users provide the gene signature sets, they can still optionally apply AA to refine marker genes and update anchor spots for known cell types. In addition, AA can identify & assign potential novel cell types / states. Here are the features provided by the optional archetypal analysis: # - Finding archetypal spots & assign 1-1 mapping to their closest anchor spot neighbors # - Finding archetypal marker genes & append them to marker genes of annotated cell types # - Assigning novel cell type / cell states as the most distant archetypes # # Overall, Starfysh provides the archetypal analysis as a complementary toolkit for automatic cell-type annotation & signature gene completion:<br><br> # # 1. *If signature genes aren't provided:* <br><br>Archetypal analysis defines the geometric extrema of the data as major cell types with corresponding marker genes.<br><br> # # 2. *If complete signature genes are known*: <br><br>Users can skip this section and use only the signature priors<br><br> # # 3. *If signature genes are incomplete or need refinement*: <br><br>Archetypal analysis can be applied to # a. Refine signatures of certain cell types # b. Find novel cell types / states that haven't been provided from the input signature # #### If signature genes aren't provided # # Note: <br> # - Intrinsic Dimension (ID) estimator is implemented to estimate the lower-bound for the number of archetypes $k$, followed by elbow method with iterations to identify the optimal $k$. By default, a [conditional number](https://scikit-dimension.readthedocs.io/en/latest/skdim.id.FisherS.html) is set as 30; if you believe there are potentially more / fewer cell types, please increase / decrease `cn` accordingly. # Major cell types & corresponding markers are represented by the inferred archetypes:<br><br> # # # # ```Python # aa_model = AA.ArchetypalAnalysis(adata_orig=adata_normed) # archetype, arche_dict, major_idx, evs = aa_model.compute_archetypes(r=40) # # # (1). Find archetypal spots & archetypal clusters # arche_df = aa_model.find_archetypal_spots(major=True) # # # (2). Define "signature genes" as marker genes associated with each archetypal cluster # gene_sig = aa_model.find_markers(n_markers=30, display=False) # gene_sig.head() # ``` # #### If complete signature genes are known # # Users can skip th section & run Starfysh # # #### If signature genes are incomplete or require refinement # # **In this tutorial, we'll show an example of applying best-aligned archetypes to existing `anchors` of given cell type(s) to append signature genes.** # In[ ]: aa_model = AA.ArchetypalAnalysis(adata_orig=adata_normed) archetype, arche_dict, major_idx, evs = aa_model.compute_archetypes(cn=40) # (1). Find archetypal spots & archetypal clusters arche_df = aa_model.find_archetypal_spots(major=True) # (2). Find marker genes associated with each archetypal cluster markers_df = aa_model.find_markers(n_markers=30, display=False) # (3). Map archetypes to closest anchors (1-1 per cell type) map_df, map_dict = aa_model.assign_archetypes(anchors_df) # (4). Optional: Find the most distant archetypes that are not assigned to any annotated cell types distant_arches = aa_model.find_distant_archetypes(anchors_df, n=3) # In[16]: plot_utils.plot_evs(evs, kmin=aa_model.kmin) # - Visualize archetypes # In[17]: aa_model.plot_archetypes(do_3d=False, major=True, disp_cluster=False) # - Visualize archetypal - cell type mapping: # In[18]: aa_model.plot_mapping(map_df) # - Application: appending marker genes Append archetypal marker genes with the best-aligned anchors: # In[ ]: visium_args = utils.refine_anchors( visium_args, aa_model, #thld=0.7, # alignment threshold n_genes=5, #n_iters=1 ) # Get updated adata & signatures adata, adata_normed = visium_args.get_adata() gene_sig = visium_args.gene_sig cell_types = gene_sig.columns # ## Run starfysh without histology integration # # # # We perform `n_repeat` random restarts and select the best model with lowest loss for parameter `c` (inferred cell-type proportions): # # ### (1). Model parameters # In[20]: import torch n_repeats = 3 epochs = 200 patience = 50 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ### (2). Model training # # Users can choose to run the one of the following `Starfysh` model without/with histology integration: # # Without histology integration: setting `utils.run_starfysh(poe=False)` (default) # # With histology integration: setting `utils.run_starfysh(poe=True)` # In[21]: # Run models model, loss = utils.run_starfysh(visium_args, n_repeats=n_repeats, epochs=epochs, #patience=patience, device=device ) # ### Downstream analysis # # ### Parse Starfysh inference output # In[22]: adata, adata_normed = visium_args.get_adata() inference_outputs, generative_outputs,adata_ = sf_model.model_eval(model, adata, visium_args, poe=False, device=device) # ### Visualize starfysh deconvolution results # # **Gene sig mean vs. inferred prop** # In[31]: import numpy as np n_cell_types = gene_sig.shape[1] idx = np.random.randint(0, n_cell_types) post_analysis.gene_mean_vs_inferred_prop(inference_outputs, visium_args, idx=idx, figsize=(4,4) ) # ### Spatial visualizations: # # Inferred density on Spatial map: # In[24]: plot_utils.pl_spatial_inf_feature(adata_, feature='ql_m', cmap='Blues') # **Inferred cell-type proportions (spatial map):** # # In[25]: def cell2proportion(adata): adata_plot=sc.AnnData(adata.X) adata_plot.obs=utils.extract_feature(adata_, 'qc_m').obs.copy() adata_plot.var=adata.var.copy() adata_plot.obsm=adata.obsm.copy() adata_plot.obsp=adata.obsp.copy() adata_plot.uns=adata.uns.copy() return adata_plot adata_plot=cell2proportion(adata_) # In[26]: adata_plot # In[27]: sc.pl.spatial(adata_plot, cmap='Spectral_r', # show first 8 cell types color=['Basal','LumA','LumB'], ncols=4, size=1.3, img_key='hires', vmin=0, vmax='p90' ) # In[28]: ov.pl.embedding(adata_plot, basis='z_umap', color=['Basal', 'LumA', 'MBC', 'Normal epithelial'], frameon='small', vmin=0, vmax='p90', cmap='Spectral_r', ) # In[29]: pred_exprs = sf_model.model_ct_exp(model, adata, visium_args, device=device) # Plot spot-level expression (e.g. `IL7R` from *Effector Memory T cells (Tem)*): # # In[30]: gene='IL7R' gene_celltype='Tem' adata_.layers[f'infer_{gene_celltype}']=pred_exprs[gene_celltype] sc.pl.spatial(adata_, cmap='Spectral_r', # show first 8 cell types color=gene, title=f'{gene} (Predicted expression)\n{gene_celltype}', layer=f'infer_{gene_celltype}', ncols=4, size=1.3, img_key='hires', #vmin=0, vmax='p90' ) # ### Save model & inferred parameters # In[ ]: # Specify output directory outdir = './results/' if not os.path.exists(outdir): os.mkdir(outdir) # save the model torch.save(model.state_dict(), os.path.join(outdir, 'starfysh_model.pt')) # save `adata` object with inferred parameters adata.write(os.path.join(outdir, 'st.h5ad')) |