File size: 11,732 Bytes
2999286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#!/usr/bin/env python
# coding: utf-8

# # Single cell spatial alignment tools
# 
# SLAT (Spatially-Linked Alignment Tool), a graph-based algorithm for efficient and effective alignment of spatial slices. Adopting a graph adversarial matching strategy, SLAT is the first algorithm capable of aligning heterogenous spatial data across distinct technologies and modalities. 
# 
# We made two improvements in integrating the STT algorithm in OmicVerse:
# 
# - **Fix the running error in alignment**: We fixed some issues with the scSLAT package on pypi.
# - **Added more downstream analysis**: We have expanded on the original tutorial by combining the tutorial and reproduce code given by the authors for downstream analysis.
# 
# If you found this tutorial helpful, please cite SLAT and OmicVerse: 
# 
# - Xia, CR., Cao, ZJ., Tu, XM. et al. Spatial-linked alignment tool (SLAT) for aligning heterogenous slices. Nat Commun 14, 7236 (2023). https://doi.org/10.1038/s41467-023-43105-5

# In[1]:


import omicverse as ov
import os

import scanpy as sc
import numpy as np
import pandas as pd
import torch
ov.plot_set()


# In[2]:


#import scSLAT
from omicverse.externel.scSLAT.model import load_anndatas, Cal_Spatial_Net, run_SLAT, scanpy_workflow, spatial_match
from omicverse.externel.scSLAT.viz import match_3D_multi, hist, Sankey, match_3D_celltype, Sankey,Sankey_multi,build_3D
from omicverse.externel.scSLAT.metrics import region_statistics


# ## Preprocess Data
# 
# adata1.h5ad: E11.5 mouse embryo dataset, download from [here](https://drive.google.com/uc?export=download&id=1KkuJt6aSlKS1AJzFZjE_odypY-GINRuD)
# 
# adata2.h5ad: E12.5 mouse embryo dataset, download from [here](https://drive.google.com/uc?export=download&id=1YIiEmjGfHxcDbGn4nv2kzmTHUo3_q5hJ)

# In[3]:


adata1 = sc.read_h5ad('data/E115_Stereo.h5ad')
adata2 = sc.read_h5ad('data/E125_Stereo.h5ad')


# In[4]:


adata1.obs['week']='E11.5'
adata2.obs['week']='E12.5'


# In[5]:


sc.pl.spatial(adata1, color='annotation', spot_size=3)
sc.pl.spatial(adata2, color='annotation', spot_size=3)


# ## Run SLAT
# 
# Then we run SLAT as usual

# In[6]:


Cal_Spatial_Net(adata1, k_cutoff=20, model='KNN')
Cal_Spatial_Net(adata2, k_cutoff=20, model='KNN')
edges, features = load_anndatas([adata1, adata2], feature='DPCA', check_order=False)


# In[7]:


embd0, embd1, time = run_SLAT(features, edges, LGCN_layer=5)


# In[8]:


best, index, distance = spatial_match([embd0, embd1], reorder=False, adatas=[adata1,adata2])


# In[9]:


matching = np.array([range(index.shape[0]), best])
best_match = distance[:,0]
region_statistics(best_match, start=0.5, number_of_interval=10)


# ## Visualization of alignment

# In[10]:


import matplotlib.pyplot as plt
matching_list=[matching]
model = build_3D([adata1,adata2], matching_list,subsample_size=300, )
ax=model.draw_3D(hide_axis=True, line_color='#c2c2c2', height=1, size=[6,6], line_width=1)


# Then we check the alignment quality of the whole slide

# In[11]:


adata2.obs['low_quality_index']= best_match
adata2.obs['low_quality_index'] = adata2.obs['low_quality_index'].astype(float)


# In[12]:


adata2.obsm['spatial']


# In[13]:


sc.pl.spatial(adata2, color='low_quality_index', spot_size=3, title='Quality')


# We use a Sankey diagram to show the correspondence between cell types at different stages of development

# In[33]:


fig=Sankey_multi(adata_li=[adata1,adata2],
             prefix_li=['E11.5','E12.5'],
             matching_li=[matching],
                clusters='annotation',filter_num=10,
             node_opacity = 0.8,
             link_opacity = 0.2,
                layout=[800,500],
           font_size=12,
           font_color='Black',
           save_name=None,
           format='png',
           width=1200,
           height=1000,
           return_fig=True)
fig.show()


# In[34]:


fig.write_html("slat_sankey.html")


# ## Focus on developing Kidney
# 
# We highlighted the “Kidney” cells in E12.5 and their aligned precursor cells in E11.5 in alignment results. Consistent with our biological priors, the precursors of the kidney are the mesonephros and the metanephros
# 
# Then we focus on another organ: ‘Ovary’, and found ovary only has single spatial origin. It is interesting that precursors of ovary are spatially close to the mesonephros (see Kidney part), because mammalian ovary originates from the regressed mesonephros.

# In[27]:


color_dict1=dict(zip(adata1.obs['annotation'].cat.categories,
                    adata1.uns['annotation_colors'].tolist()))
adata1_df = pd.DataFrame({'index':range(embd0.shape[0]),
                          'x': adata1.obsm['spatial'][:,0],
                          'y': adata1.obsm['spatial'][:,1],
                          'celltype':adata1.obs['annotation'],
                         'color':adata1.obs['annotation'].map(color_dict1)
                         }
                        )
color_dict2=dict(zip(adata2.obs['annotation'].cat.categories,
                    adata2.uns['annotation_colors'].tolist()))
adata2_df = pd.DataFrame({'index':range(embd1.shape[0]),
                          'x': adata2.obsm['spatial'][:,0],
                          'y': adata2.obsm['spatial'][:,1],
                          'celltype':adata2.obs['annotation'],
                         'color':adata2.obs['annotation'].map(color_dict2)
                         }
                        )


# In[28]:


kidney_align = match_3D_celltype(adata1_df, adata2_df, matching, meta='celltype', 
                                 highlight_celltype = [['Urogenital ridge'],['Kidney','Ovary']],
                                 subsample_size=10000, highlight_line = ['blue'], scale_coordinate = True )
kidney_align.draw_3D(size= [6, 6], line_width =0.8, point_size=[0.6,0.6], hide_axis=True)


# We can get the lineage of the query's cells and mappings using the following function

# In[15]:


def cal_matching_cell(target_adata,query_adata,matching,query_cell,clusters='annotation',):
    adata1_df = pd.DataFrame({'index':range(target_adata.shape[0]),
                          'x': target_adata.obsm['spatial'][:,0],
                          'y': target_adata.obsm['spatial'][:,1],
                          'celltype':target_adata.obs[clusters]})
    adata2_df = pd.DataFrame({'index':range(query_adata.shape[0]),
                              'x': query_adata.obsm['spatial'][:,0],
                              'y': query_adata.obsm['spatial'][:,1],
                              'celltype':query_adata.obs[clusters]})
    query_adata = target_adata[matching[1,adata2_df.loc[adata2_df.celltype==query_cell,'index'].values],:]
    #adata2_df['target_celltype'] = adata1_df.iloc[matching[1,:],:]['celltype'].to_list()
    #adata2_df['target_obs_names'] = adata1_df.iloc[matching[1,:],:].index.to_list()
    
    #query_obs=adata2_df.loc[adata2_df['celltype']==query_cell,'target_obs_names'].tolist()
    return query_adata
    


# We find that maps mapped on 3D also show up well on 2D

# In[21]:


query_adata=cal_matching_cell(target_adata=adata1,
                              query_adata=adata2,
                              matching=matching,
                              query_cell='Kidney',clusters='annotation')
query_adata


# In[17]:


adata1.obs['kidney_anno']=''
adata1.obs.loc[query_adata.obs.index,'kidney_anno']=query_adata.obs['annotation']


# In[18]:


sc.pl.spatial(adata1, color='kidney_anno', spot_size=3,
             palette=['#F5F5F5','#ff7f0e', 'green',])


# We are concerned with Kidney lineage development, so we integrated the cells corresponding to the Kidney lineage on the two sections of E11 and E12, and then we could use the method of difference analysis to study the dynamic process of Kidney lineage development.

# In[22]:


kidney_lineage_ad=sc.concat([query_adata,adata2[adata2.obs['annotation']=='Kidney']],merge='same')
kidney_lineage_ad=ov.pp.preprocess(kidney_lineage_ad,mode='shiftlog|pearson',n_HVGs=3000,target_sum=1e4)
kidney_lineage_ad.raw = kidney_lineage_ad
kidney_lineage_ad = kidney_lineage_ad[:, kidney_lineage_ad.var.highly_variable_features]
ov.pp.scale(kidney_lineage_ad)
ov.pp.pca(kidney_lineage_ad)
ov.pp.neighbors(kidney_lineage_ad,use_rep='scaled|original|X_pca',metric="cosine")
ov.utils.cluster(kidney_lineage_ad,method='leiden',resolution=1)
ov.pp.umap(kidney_lineage_ad)


# In[23]:


ov.pl.embedding(kidney_lineage_ad,basis='X_umap',
               color=['annotation','week','leiden'],
               frameon='small')


# In[25]:


# Nphs1 https://www.nature.com/articles/s41467-021-22266-1
sc.pl.dotplot(kidney_lineage_ad,{'nephron progenitors':['Wnt9b','Osr1','Nphs1','Lhx1','Pax2','Pax8'],
                         'metanephric':['Eya1','Shisa3','Foxc1'], 
                         'kidney':['Wt1','Wnt4','Nr2f2','Dach1','Cd44']} ,
              'leiden',dendrogram=False,colorbar_title='Expression')


# In[26]:


kidney_lineage_ad.obs['re_anno'] = 'Unknown'
kidney_lineage_ad.obs.loc[kidney_lineage_ad.obs.leiden.isin(['4']),'re_anno'] = 'Nephron progenitors (E11.5)'
kidney_lineage_ad.obs.loc[kidney_lineage_ad.obs.leiden.isin(['2','3','1','5']),'re_anno'] = 'Metanephron progenitors (E11.5)'
kidney_lineage_ad.obs.loc[kidney_lineage_ad.obs.leiden=='0','re_anno'] = 'Kidney (E12.5)'


# In[28]:


# kidney_all = kidney_all[kidney_all.obs.leiden!='3',:]
kidney_lineage_ad.obs.leiden = list(kidney_lineage_ad.obs.leiden)
ov.pl.embedding(kidney_lineage_ad,basis='X_umap',
               color=['annotation','re_anno'],
               frameon='small')


# In[29]:


adata1.obs['kidney_anno']=''
adata1.obs.loc[kidney_lineage_ad[kidney_lineage_ad.obs['week']=='E11.5'].obs.index,'kidney_anno']=kidney_lineage_ad[kidney_lineage_ad.obs['week']=='E11.5'].obs['re_anno']


# In[41]:


import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1, figsize=(8, 8))
sc.pl.spatial(adata1, color='kidney_anno', spot_size=1.5,
             palette=['#F5F5F5','#ff7f0e', 'green',],show=False,ax=ax)


# We can also differentially analyse Kidney's developmental pedigree to find different marker genes, and we can analyse transcription factors and thus find the regulatory units involved.

# In[42]:


test_adata=kidney_lineage_ad
dds=ov.bulk.pyDEG(test_adata.to_df(layer='lognorm').T)
dds.drop_duplicates_index()
print('... drop_duplicates_index success')
treatment_groups=test_adata.obs[test_adata.obs['week']=='E12.5'].index.tolist()
control_groups=test_adata.obs[test_adata.obs['week']=='E11.5'].index.tolist()
result=dds.deg_analysis(treatment_groups,control_groups,method='ttest')
# -1 means automatically calculates
dds.foldchange_set(fc_threshold=-1,
                   pval_threshold=0.05,
                   logp_max=10)


# In[43]:


dds.plot_volcano(title='DEG Analysis',figsize=(4,4),
                 plot_genes_num=8,plot_genes_fontsize=12,)


# In[52]:


up_gene=dds.result.loc[dds.result['sig']=='up'].sort_values('qvalue')[:3].index.tolist()
down_gene=dds.result.loc[dds.result['sig']=='down'].sort_values('qvalue')[:3].index.tolist()
deg_gene=up_gene+down_gene


# In[53]:


sc.pl.dotplot(kidney_lineage_ad,deg_gene,
             groupby='re_anno')


# In addition to analysing directly using differential expression, we can also look for weekly marker genes by considering weeks as categories.

# In[55]:


sc.tl.dendrogram(kidney_lineage_ad,'re_anno',use_rep='scaled|original|X_pca')
sc.tl.rank_genes_groups(kidney_lineage_ad, 're_anno', use_rep='scaled|original|X_pca',
                        method='t-test',use_raw=False,key_added='re_anno_ttest')
sc.pl.rank_genes_groups_dotplot(kidney_lineage_ad,groupby='re_anno',
                                cmap='RdBu_r',key='re_anno_ttest',
                                standard_scale='var',n_genes=3)