KeTuTu's picture
Upload 46 files
2999286 verified
raw
history blame
12 kB
#!/usr/bin/env python
# coding: utf-8
# # Automatic cell type annotation with GPT/Other
#
# GPTCelltype, an open-source R software package to facilitate cell type annotation by GPT-4.
#
# We made three improvements in integrating the `GPTCelltype` algorithm in OmicVerse:
#
# - **Native support for Python**: Since GPTCelltype is an R language package, in order to make it conform to scverse's anndata ecosystem, we have rewritten the whole function so that it works perfectly under Python.
# - **More model support**: We provide more big models to choose from outside of Openai, e.g. Qwen(通义千问), Kimi, and more model support is available through the parameter `base_url` or `model_name`.
#
# If you found this tutorial helpful, please cite GPTCelltype and OmicVerse:
#
# Hou, W. and Ji, Z., 2023. Reference-free and cost-effective automated cell type annotation with GPT-4 in single-cell RNA-seq analysis. [Nature Methods, 2024 March 25](https://link.springer.com/article/10.1038/s41592-024-02235-4?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20240325&utm_content=10.1038/s41592-024-02235-4).
# In[3]:
import omicverse as ov
print(f'omicverse version:{ov.__version__}')
import scanpy as sc
print(f'scanpy version:{sc.__version__}')
ov.ov_plot_set()
# ## Loading data
#
# The data consist of 3k PBMCs from a Healthy Donor and are freely available from 10x Genomics ([here](http://cf.10xgenomics.com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz) from this [webpage](https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k)). On a unix system, you can uncomment and run the following to download and unpack the data. The last line creates a directory for writing processed data.
#
# In[21]:
# !mkdir data
# !wget http://cf.10xgenomics.com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz -O data/pbmc3k_filtered_gene_bc_matrices.tar.gz
# !cd data; tar -xzf pbmc3k_filtered_gene_bc_matrices.tar.gz
# !mkdir write
# Read in the count matrix into an AnnData object, which holds many slots for annotations and different representations of the data. It also comes with its own HDF5-based file format: `.h5ad`.
# In[3]:
adata = sc.read_10x_mtx(
'data/filtered_gene_bc_matrices/hg19/', # the directory with the `.mtx` file
var_names='gene_symbols', # use gene symbols for the variable names (variables-axis index)
cache=True) # write a cache file for faster subsequent reading
# ## Data preprocessing
#
# Here, we use `ov.single.scanpy_lazy` to preprocess the raw data of scRNA-seq, it included filter the doublets cells, normalizing counts per cell, log1p, extracting highly variable genes, and cluster of cells calculation.
#
# But if you want to experience step-by-step preprocessing, we also provide more detailed preprocessing steps here, please refer to our [preprocess chapter](https://omicverse.readthedocs.io/en/latest/Tutorials-single/t_preprocess/) for a detailed explanation.
#
# We stored the raw counts in `count` layers, and the raw data in `adata.raw.to_adata()`.
# In[ ]:
#adata=ov.single.scanpy_lazy(adata)
#quantity control
adata=ov.pp.qc(adata,
tresh={'mito_perc': 0.05, 'nUMIs': 500, 'detected_genes': 250})
#normalize and high variable genes (HVGs) calculated
adata=ov.pp.preprocess(adata,mode='shiftlog|pearson',n_HVGs=2000,)
#save the whole genes and filter the non-HVGs
adata.raw = adata
adata = adata[:, adata.var.highly_variable_features]
#scale the adata.X
ov.pp.scale(adata)
#Dimensionality Reduction
ov.pp.pca(adata,layer='scaled',n_pcs=50)
#Neighbourhood graph construction
sc.pp.neighbors(adata, n_neighbors=15, n_pcs=50,
use_rep='scaled|original|X_pca')
#clusters
sc.tl.leiden(adata)
#find marker
sc.tl.dendrogram(adata,'leiden',use_rep='scaled|original|X_pca')
sc.tl.rank_genes_groups(adata, 'leiden', use_rep='scaled|original|X_pca',
method='wilcoxon',use_raw=False,)
#Dimensionality Reduction for visualization(X_mde=X_umap+GPU)
adata.obsm["X_mde"] = ov.utils.mde(adata.obsm["scaled|original|X_pca"])
adata
# In[5]:
ov.pl.embedding(adata,
basis='X_mde',
color=['leiden'],
legend_loc='on data',
frameon='small',
legend_fontoutline=2,
palette=ov.utils.palette()[14:],
)
# ## GPT Celltype
#
# gptcelltype supports dictionary format input, we provide `omicverse.single.get_celltype_marker` to get the marker genes for each cell type as a dictionary.
# #### Using genes manually
#
# We can manually define a dictionary to determine the accuracy of the output
# In[25]:
import os
all_markers={'cluster1':['CD3D','CD3E'],
'cluster2':['MS4A1']}
os.environ['AGI_API_KEY'] = 'sk-**' # Replace with your actual API key
result = ov.single.gptcelltype(all_markers, tissuename='PBMC', speciename='human',
model='qwen-plus', provider='qwen',
topgenenumber=5)
result
# #### Get Genes for Each Cluster Automatically
#
# In[14]:
all_markers=ov.single.get_celltype_marker(adata,clustertype='leiden',rank=True,
key='rank_genes_groups',
foldchange=2,topgenenumber=5)
all_markers
# ### Option 1. Through OpenAI API (`provider` or `base_url`)
#
# Use `ov.single.gptcelltype` function to annotate cell types.
#
# You can simply set `provider` (or `base_url`) and `provider` parameters to provide the function with base url and the exact model which are required for model calling.
# In[17]:
import os
os.environ['AGI_API_KEY'] = 'sk-**' # Replace with your actual API key
result = ov.single.gptcelltype(all_markers, tissuename='PBMC', speciename='human',
model='qwen-plus', provider='qwen',
topgenenumber=5)
result
# We can keep only the cell type of the output and remove other irrelevant information.
# In[18]:
new_result={}
for key in result.keys():
new_result[key]=result[key].split(': ')[-1].split(' (')[0].split('. ')[1]
new_result
# In[19]:
adata.obs['gpt_celltype'] = adata.obs['leiden'].map(new_result).astype('category')
# In[20]:
ov.pl.embedding(adata,
basis='X_mde',
color=['leiden','gpt_celltype'],
legend_loc='on data',
frameon='small',
legend_fontoutline=2,
palette=ov.utils.palette()[14:],
)
# ## More models
#
# Our implementation of `gptcelltype` in `omicverse` supports almost all large language models that support the `openai` api format.
# In[27]:
all_markers={'cluster1':['CD3D','CD3E'],
'cluster2':['MS4A1']}
# ### Openai
#
# The OpenAI API uses API keys for authentication. You can create API keys at a user or service account level. Service accounts are tied to a "bot" individual and should be used to provision access for production systems. Each API key can be scoped to one of the following,
#
# - [User keys](https://platform.openai.com/account/api-keys) - Our legacy keys. Provides access to all organizations and all projects that user has been added to; access API Keys to view your available keys. We highly advise transitioning to project keys for best security practices, although access via this method is currently still supported.
#
# - Please select the model you need to use: [list of supported models](https://platform.openai.com/docs/models).
#
# In[28]:
os.environ['AGI_API_KEY'] = 'sk-**' # Replace with your actual API key
result = ov.single.gptcelltype(all_markers, tissuename='PBMC', speciename='human',
model='gpt-4o', provider='openai',
topgenenumber=5)
result
# ### Qwen(通义千问)
#
# - Enabled DashScope service and obtained API-KEY: [Enabled DashScope and created API-KEY](https://help.aliyun.com/zh/dashscope/developer-reference/activate-dashscope-and-create-an-api-key).
#
# - We recommend you to configure API-KEY in environment variable to reduce the risk of API-KEY leakage, please refer to Configuring API-KEY through Environment Variable for the configuration method, you can also configure API-KEY in code, but the risk of leakage will be increased.
#
# - Please select the model you need to use: [list of supported models](https://help.aliyun.com/zh/dashscope/developer-reference/compatibility-of-openai-with-dashscope/?spm=a2c4g.11186623.0.i6#eadfc13038jd5).
#
# **简体中文**
#
# - 已开通灵积模型服务并获得API-KEY:[开通DashScope并创建API-KEY](https://help.aliyun.com/zh/dashscope/developer-reference/activate-dashscope-and-create-an-api-key)。
#
# - 我们推荐您将API-KEY配置到环境变量中以降低API-KEY的泄漏风险,配置方法可参考通过环境变量配置API-KEY。您也可以在代码中配置API-KEY,但是泄漏风险会提高。
#
# - 请选择您需要使用的模型:[支持的模型列表](https://help.aliyun.com/zh/dashscope/developer-reference/compatibility-of-openai-with-dashscope/?spm=a2c4g.11186623.0.i6#eadfc13038jd5)。
#
# In[26]:
os.environ['AGI_API_KEY'] = 'sk-**' # Replace with your actual API key
result = ov.single.gptcelltype(all_markers, tissuename='PBMC', speciename='human',
model='qwen-plus', provider='qwen',
topgenenumber=5)
result
# ### Kimi(月之暗面)
#
# - You will need a Dark Side of the Moon API key to use our service. You can create an API key in [Console](https://platform.moonshot.cn/console).
#
# - Please select the model you need to use: [List of supported models](https://platform.moonshot.cn/docs/pricing#%E4%BA%A7%E5%93%81%E5%AE%9A%E4%BB%B7)
#
# **简体中文**
#
# - 你需要一个 月之暗面的 API 密钥来使用我们的服务。你可以在[控制台](https://platform.moonshot.cn/console)中创建一个 API 密钥。
#
# - 请选择您需要使用的模型:[支持的模型列表](https://platform.moonshot.cn/docs/pricing#%E4%BA%A7%E5%93%81%E5%AE%9A%E4%BB%B7)
# In[28]:
os.environ['AGI_API_KEY'] = 'sk-**' # Replace with your actual API key
result = ov.single.gptcelltype(all_markers, tissuename='PBMC', speciename='human',
model='moonshot-v1-8k', provider='kimi',
topgenenumber=5)
result
# #### Other Models
#
# You can manually set the `base_url` parameter to specify other models that need to be used, note that the model needs to support Openai's parameters. Three examples are provided here (when you specify the `base_url` parameter, the `provider` parameter will be invalid):
#
# ```python
# if provider == 'openai':
# base_url = "https://api.openai.com/v1/"
# elif provider == 'kimi':
# base_url = "https://api.moonshot.cn/v1"
# elif provider == 'qwen':
# base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
# ```
# In[30]:
os.environ['AGI_API_KEY'] = 'sk-**' # Replace with your actual API key
result = ov.single.gptcelltype(all_markers, tissuename='PBMC', speciename='human',
model='moonshot-v1-8k', base_url="https://api.moonshot.cn/v1",
topgenenumber=5)
result
# ### Option 2. Through Local LLM (`model_name`)
# Use `ov.single.gptcelltype_local` function to annotate cell types.
#
# You can simply set the `model_name` parameter.
# In[5]:
anno_model = 'path/to/your/local/LLM' # '~/models/Qwen2-7B-Instruct'
result = ov.single.gptcelltype_local(all_markers, tissuename='PBMC', speciename='human',
model_name=anno_model, topgenenumber=5)
result
# Note that you may encounter network problems that prevent you from downloading LLMs.
#
# In this case, please refer to https://zhuanlan.zhihu.com/p/663712983
# In[ ]:
# In[ ]:
# In[ ]: