Spaces:
Sleeping
Sleeping
File size: 6,355 Bytes
0128def e3d7fcc 47728dd 0128def 3ce50c4 e0cc0af e8d4494 e3d7fcc 0128def b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d 3396761 b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d ae04b8f b11932d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
title: First Agent Template
emoji: "π€"
colorFrom: pink
colorTo: yellow
sdk: gradio
sdk_version: 5.15.0
app_file: app.py
pinned: false
tags:
- smolagents
- agent
- smolagent
- tool
- agent-course
---
# SmoLAgents Conversational Agent
A powerful conversational agent built with SmoLAgents that can connect to various language models, perform web searches, create visualizations, execute code, and much more.
## π Overview
This project provides a flexible and powerful conversational agent that can:
- Connect to different types of language models (local or cloud-based)
- Perform web searches to retrieve up-to-date information
- Visit and extract content from webpages
- Execute shell commands with appropriate security measures
- Create and modify files
- Generate data visualizations based on natural language requests
- Execute Python code within the chat interface
The agent is available through two interfaces:
- A Gradio interface (original)
- A Streamlit interface (new) with enhanced features and configuration options
## π οΈ Prerequisites
- Python 3.8+
- A language model, which can be one of:
- A local model running through an OpenAI-compatible API server (like [LM Studio](https://lmstudio.ai/), [Ollama](https://ollama.ai/), etc.)
- A Hugging Face model accessible via API
- A cloud-based model with API access
## π Installation
1. Clone this repository:
```bash
git clone https://github.com/yourusername/smolagents-conversational-agent.git
cd smolagents-conversational-agent
```
2. Install the required dependencies:
```bash
pip install -r requirements.txt
```
## π§ Setup
### Setting Up a Language Model
You have several options for the language model:
#### Option 1: Local Model with LM Studio (Recommended for beginners)
1. Download and install [LM Studio](https://lmstudio.ai/)
2. Launch LM Studio and download a model (e.g., Mistral 7B, Llama 2, etc.)
3. Start the local server by clicking "Start Server"
4. Note the server URL (typically http://localhost:1234/v1)
#### Option 2: Using OpenRouter
1. Create an account on [OpenRouter](https://openrouter.ai/)
2. Get your API key from the dashboard
3. Use the OpenRouter URL and your API key in the agent configuration
#### Option 3: Hugging Face API ( no more tested be careful )
1. If you have access to Hugging Face API endpoints, you can use them directly
2. Configure the URL and parameters in the agent interface
## π» Usage
### Streamlit Interface (Recommended)
The Streamlit interface offers a more user-friendly experience with additional features:
1. Launch the Streamlit application:
```bash
streamlit run streamlit_app.py
```
2. Access the interface in your web browser at http://localhost:8501
3. Configure your model in the sidebar:
- Select the model type (OpenAI Server, Hugging Face API, or Hugging Face Cloud)
- Enter the required configuration parameters
- Click "Apply Configuration"
4. Start chatting with the agent in the main interface
### Gradio Interface
The original Gradio interface is still available:
1. Launch the Gradio application:
```bash
python app.py
```
2. Access the interface in your web browser at the URL displayed in the terminal (typically http://localhost:7860)
## π Features
### Streamlit Interface Features
- **Interactive Chat Interface**: Engage in natural conversations with the agent
- **Multiple Model Support**:
- OpenAI Server (LM Studio or other OpenAI-compatible servers)
- Hugging Face API
- Hugging Face Cloud
- **Real-time Agent Reasoning**: See the agent's thought process as it works on your request
- **Customizable Configuration**: Adjust model parameters without modifying code
- **Data Visualization**: Request and generate charts directly in the chat
- **Code Execution**: Run Python code generated by the agent within the chat interface
- **Timezone Display**: Check current time in different time zones
- **Custom Icon**: Uses a custom ico.webp icon for the application and sidebar
### Agent Tools
The agent comes equipped with several powerful tools:
- **Web Search**: Search the web via DuckDuckGo to get up-to-date information
- **Webpage Visiting**: Visit and extract content from specific webpages
- **Shell Command Execution**: Run commands on your system (with appropriate security)
- **File Operations**: Create and modify files on your system
- **Data Visualization**: Generate charts and graphs based on your requests
- **Code Execution**: Run Python code within the chat interface
## 𧩠Extending the Agent
### Adding Custom Tools
You can extend the agent with your own custom tools by modifying the `app.py` file:
```python
@tool
def my_custom_tool(arg1: str, arg2: int) -> str:
"""Description of what the tool does
Args:
arg1: description of the first argument
arg2: description of the second argument
"""
# Your tool implementation
return "Tool result"
```
### Customizing Prompts
The agent's behavior can be customized by modifying the prompt templates in the `prompts.yaml` file.
## π Visualization Examples
The agent can generate visualizations based on natural language requests. Try asking:
- "Show me a line chart of temperature trends over the past year"
- "Create a bar chart of sales by region"
- "Display a scatter plot of age vs. income"
## π Troubleshooting
- **Agent not responding**: Verify that your LLM server is running and accessible
- **Connection errors**: Check the URL and API key in your configuration
- **Slow responses**: Consider using a smaller or more efficient model
- **Missing dependencies**: Ensure all requirements are installed via `pip install -r requirements.txt`
## π Examples
Here are some example queries you can try with the agent:
- "What's the current time in Tokyo?"
- "Can you summarize the latest news about AI?"
- "Create a Python function to sort a list of dictionaries by a specific key"
- "Explain how transformer models work in AI"
- "Show me a bar chart of population by continent"
- "Write a simple web scraper to extract headlines from a news website"
## π€ Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
---
*For more information on Hugging Face Spaces configuration, visit https://huggingface.co/docs/hub/spaces-config-reference*
|