Spaces:
Sleeping
Sleeping
File size: 16,611 Bytes
47728dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
import re
from typing import Dict, List, Union, Optional, Any
def create_line_chart(
data: Union[pd.DataFrame, Dict[str, List[Union[int, float]]], List[Dict[str, Union[int, float]]]],
title: str = "Line Chart",
x_label: str = "X-Axis",
y_label: str = "Y-Axis",
color_sequence: Optional[List[str]] = None,
height: int = 400,
width: int = 700
) -> go.Figure:
"""
Create a line chart using Plotly.
Args:
data: Data for the chart. Can be a pandas DataFrame, a dictionary with lists as values,
or a list of dictionaries.
title: Title of the chart.
x_label: Label for the x-axis.
y_label: Label for the y-axis.
color_sequence: Optional list of colors for the lines.
height: Height of the chart in pixels.
width: Width of the chart in pixels.
Returns:
A Plotly Figure object.
"""
fig = go.Figure()
# Convert data to pandas DataFrame if it's not already
if isinstance(data, dict):
df = pd.DataFrame(data)
elif isinstance(data, list) and all(isinstance(item, dict) for item in data):
df = pd.DataFrame(data)
elif isinstance(data, pd.DataFrame):
df = data
else:
raise ValueError("Data must be a pandas DataFrame, a dictionary with lists as values, or a list of dictionaries.")
# If the DataFrame has only two columns, use them as x and y
if len(df.columns) == 2:
x_col = df.columns[0]
y_col = df.columns[1]
fig.add_trace(go.Scatter(x=df[x_col], y=df[y_col], mode='lines+markers', name=y_col))
else:
# Assume first column is x and the rest are y values
x_col = df.columns[0]
for i, col in enumerate(df.columns[1:]):
color = color_sequence[i % len(color_sequence)] if color_sequence else None
fig.add_trace(go.Scatter(
x=df[x_col],
y=df[col],
mode='lines+markers',
name=col,
line=dict(color=color) if color else None
))
# Update layout
fig.update_layout(
title=title,
xaxis_title=x_label,
yaxis_title=y_label,
height=height,
width=width,
template="plotly_white",
hovermode="x unified"
)
return fig
def create_bar_chart(
data: Union[pd.DataFrame, Dict[str, List[Union[int, float]]], List[Dict[str, Union[int, float]]]],
title: str = "Bar Chart",
x_label: str = "X-Axis",
y_label: str = "Y-Axis",
color_sequence: Optional[List[str]] = None,
orientation: str = 'v', # 'v' for vertical, 'h' for horizontal
height: int = 400,
width: int = 700
) -> go.Figure:
"""
Create a bar chart using Plotly.
Args:
data: Data for the chart. Can be a pandas DataFrame, a dictionary with lists as values,
or a list of dictionaries.
title: Title of the chart.
x_label: Label for the x-axis.
y_label: Label for the y-axis.
color_sequence: Optional list of colors for the bars.
orientation: 'v' for vertical bars, 'h' for horizontal bars.
height: Height of the chart in pixels.
width: Width of the chart in pixels.
Returns:
A Plotly Figure object.
"""
# Convert data to pandas DataFrame if it's not already
if isinstance(data, dict):
df = pd.DataFrame(data)
elif isinstance(data, list) and all(isinstance(item, dict) for item in data):
df = pd.DataFrame(data)
elif isinstance(data, pd.DataFrame):
df = data
else:
raise ValueError("Data must be a pandas DataFrame, a dictionary with lists as values, or a list of dictionaries.")
# Create the bar chart
if orientation == 'v':
# If the DataFrame has only two columns, use them as x and y
if len(df.columns) == 2:
x_col = df.columns[0]
y_col = df.columns[1]
fig = px.bar(df, x=x_col, y=y_col, title=title, color_discrete_sequence=color_sequence)
else:
# For multiple columns, create a grouped bar chart
fig = go.Figure()
x_col = df.columns[0]
for i, col in enumerate(df.columns[1:]):
color = color_sequence[i % len(color_sequence)] if color_sequence else None
fig.add_trace(go.Bar(
x=df[x_col],
y=df[col],
name=col,
marker_color=color
))
else: # horizontal
# If the DataFrame has only two columns, use them as y and x
if len(df.columns) == 2:
y_col = df.columns[0]
x_col = df.columns[1]
fig = px.bar(df, y=y_col, x=x_col, title=title, orientation='h', color_discrete_sequence=color_sequence)
else:
# For multiple columns, create a grouped bar chart
fig = go.Figure()
y_col = df.columns[0]
for i, col in enumerate(df.columns[1:]):
color = color_sequence[i % len(color_sequence)] if color_sequence else None
fig.add_trace(go.Bar(
y=df[y_col],
x=df[col],
name=col,
marker_color=color,
orientation='h'
))
# Update layout
fig.update_layout(
title=title,
xaxis_title=x_label,
yaxis_title=y_label,
height=height,
width=width,
template="plotly_white",
barmode='group'
)
return fig
def create_scatter_plot(
data: Union[pd.DataFrame, Dict[str, List[Union[int, float]]], List[Dict[str, Union[int, float]]]],
title: str = "Scatter Plot",
x_label: str = "X-Axis",
y_label: str = "Y-Axis",
color_column: Optional[str] = None,
size_column: Optional[str] = None,
hover_data: Optional[List[str]] = None,
height: int = 400,
width: int = 700
) -> go.Figure:
"""
Create a scatter plot using Plotly.
Args:
data: Data for the chart. Can be a pandas DataFrame, a dictionary with lists as values,
or a list of dictionaries.
title: Title of the chart.
x_label: Label for the x-axis.
y_label: Label for the y-axis.
color_column: Optional column name to use for coloring points.
size_column: Optional column name to use for sizing points.
hover_data: Optional list of column names to include in hover information.
height: Height of the chart in pixels.
width: Width of the chart in pixels.
Returns:
A Plotly Figure object.
"""
# Convert data to pandas DataFrame if it's not already
if isinstance(data, dict):
df = pd.DataFrame(data)
elif isinstance(data, list) and all(isinstance(item, dict) for item in data):
df = pd.DataFrame(data)
elif isinstance(data, pd.DataFrame):
df = data
else:
raise ValueError("Data must be a pandas DataFrame, a dictionary with lists as values, or a list of dictionaries.")
# If the DataFrame has only two columns, use them as x and y
if len(df.columns) == 2:
x_col = df.columns[0]
y_col = df.columns[1]
fig = px.scatter(df, x=x_col, y=y_col, title=title)
else:
# Assume first two columns are x and y, and use additional columns for color, size, etc.
x_col = df.columns[0]
y_col = df.columns[1]
# Create the scatter plot
fig = px.scatter(
df,
x=x_col,
y=y_col,
color=color_column if color_column and color_column in df.columns else None,
size=size_column if size_column and size_column in df.columns else None,
hover_data=hover_data if hover_data else None,
title=title
)
# Update layout
fig.update_layout(
title=title,
xaxis_title=x_label,
yaxis_title=y_label,
height=height,
width=width,
template="plotly_white"
)
return fig
def detect_visualization_request(user_input: str) -> Dict[str, Any]:
"""
Detect if the user is requesting a visualization and extract relevant information.
Args:
user_input: The user's input message.
Returns:
A dictionary containing:
- 'is_visualization': Boolean indicating if a visualization is requested.
- 'chart_type': The type of chart requested ('line', 'bar', 'scatter', or None).
- 'data_description': Description of the data to visualize.
- 'parameters': Additional parameters extracted from the request.
"""
# Convert to lowercase for case-insensitive matching
user_input_lower = user_input.lower()
# Check for visualization keywords
viz_keywords = ['plot', 'chart', 'graph', 'visualize', 'visualisation', 'visualization', 'display']
is_visualization = any(keyword in user_input_lower for keyword in viz_keywords)
if not is_visualization:
return {
'is_visualization': False,
'chart_type': None,
'data_description': None,
'parameters': {}
}
# Detect chart type
chart_type = None
if any(term in user_input_lower for term in ['line chart', 'line graph', 'line plot']):
chart_type = 'line'
elif any(term in user_input_lower for term in ['bar chart', 'bar graph', 'histogram']):
chart_type = 'bar'
elif any(term in user_input_lower for term in ['scatter plot', 'scatter chart', 'scatter graph']):
chart_type = 'scatter'
# Extract data description
data_description = None
data_patterns = [
r'(?:of|for|using|with)\s+([^.?!]+?)(?:\s+(?:by|over|across|versus|vs\.?|against))',
r'(?:of|for|using|with)\s+([^.?!]+?)(?:\s+data)',
r'(?:of|for|using|with)\s+([^.?!]+?)(?:\s+(?:from|in))'
]
for pattern in data_patterns:
match = re.search(pattern, user_input_lower)
if match:
data_description = match.group(1).strip()
break
# If no match found with specific patterns, try a more general approach
if not data_description:
# Look for text between the chart type and the end of the sentence
chart_type_terms = ['line chart', 'bar chart', 'scatter plot', 'chart', 'graph', 'plot']
for term in chart_type_terms:
if term in user_input_lower:
parts = user_input_lower.split(term, 1)
if len(parts) > 1:
# Extract text after the chart type until the end of the sentence
after_chart_type = parts[1].strip()
end_sentence = re.search(r'^[^.!?]*', after_chart_type)
if end_sentence:
data_description = end_sentence.group(0).strip()
# Remove common prepositions at the beginning
data_description = re.sub(r'^(?:of|for|using|with)\s+', '', data_description)
break
# Extract additional parameters
parameters = {}
# Title
title_match = re.search(r'title[d:]?\s+["\']?([^"\'.?!]+)["\']?', user_input_lower)
if title_match:
parameters['title'] = title_match.group(1).strip()
# X-axis label
x_label_match = re.search(r'x[-\s]?(?:axis|label)[:]?\s+["\']?([^"\'.?!]+)["\']?', user_input_lower)
if x_label_match:
parameters['x_label'] = x_label_match.group(1).strip()
# Y-axis label
y_label_match = re.search(r'y[-\s]?(?:axis|label)[:]?\s+["\']?([^"\'.?!]+)["\']?', user_input_lower)
if y_label_match:
parameters['y_label'] = y_label_match.group(1).strip()
return {
'is_visualization': is_visualization,
'chart_type': chart_type,
'data_description': data_description,
'parameters': parameters
}
def generate_sample_data(data_description: str, chart_type: str) -> pd.DataFrame:
"""
Generate sample data based on the description and chart type.
This is a fallback when no actual data is available.
Args:
data_description: Description of the data to generate.
chart_type: Type of chart ('line', 'bar', 'scatter').
Returns:
A pandas DataFrame with sample data.
"""
np.random.seed(42) # For reproducibility
# Default data
if chart_type == 'line':
# Generate time series data
dates = pd.date_range(start='2023-01-01', periods=30, freq='D')
values = np.cumsum(np.random.randn(30)) + 10
df = pd.DataFrame({'Date': dates, 'Value': values})
# Try to customize based on description
if data_description:
if 'temperature' in data_description or 'weather' in data_description:
df.columns = ['Date', 'Temperature (°C)']
df['Temperature (°C)'] = np.random.normal(20, 5, 30)
elif 'stock' in data_description or 'price' in data_description:
df.columns = ['Date', 'Price ($)']
df['Price ($)'] = 100 + np.cumsum(np.random.normal(0, 2, 30))
elif 'sales' in data_description or 'revenue' in data_description:
df.columns = ['Date', 'Sales ($)']
df['Sales ($)'] = 1000 + np.cumsum(np.random.normal(0, 100, 30))
else:
df.columns = ['Date', data_description.capitalize() if data_description else 'Value']
elif chart_type == 'bar':
# Generate categorical data
categories = ['A', 'B', 'C', 'D', 'E']
values = np.random.randint(10, 100, size=len(categories))
df = pd.DataFrame({'Category': categories, 'Value': values})
# Try to customize based on description
if data_description:
if 'sales by region' in data_description or 'regional' in data_description:
df['Category'] = ['North', 'South', 'East', 'West', 'Central']
df.columns = ['Region', 'Sales ($)']
elif 'product' in data_description:
df['Category'] = ['Product A', 'Product B', 'Product C', 'Product D', 'Product E']
df.columns = ['Product', 'Units Sold']
elif 'age' in data_description or 'demographic' in data_description:
df['Category'] = ['0-18', '19-35', '36-50', '51-65', '65+']
df.columns = ['Age Group', 'Count']
else:
df.columns = ['Category', data_description.capitalize() if data_description else 'Value']
elif chart_type == 'scatter':
# Generate x-y data
x = np.random.normal(0, 1, 50)
y = x + np.random.normal(0, 0.5, 50)
df = pd.DataFrame({'X': x, 'Y': y})
# Try to customize based on description
if data_description:
if 'height' in data_description and 'weight' in data_description:
df['X'] = np.random.normal(170, 10, 50) # Heights in cm
df['Y'] = df['X'] * 0.5 + np.random.normal(0, 5, 50) # Weights in kg
df.columns = ['Height (cm)', 'Weight (kg)']
elif 'age' in data_description and ('income' in data_description or 'salary' in data_description):
df['X'] = np.random.normal(40, 10, 50) # Ages
df['Y'] = df['X'] * 1000 + 20000 + np.random.normal(0, 5000, 50) # Incomes
df.columns = ['Age', 'Income ($)']
elif 'study' in data_description or 'exam' in data_description:
df['X'] = np.random.normal(5, 2, 50) # Study hours
df['Y'] = df['X'] * 10 + 50 + np.random.normal(0, 5, 50) # Exam scores
df.columns = ['Study Hours', 'Exam Score']
else:
x_label = 'X'
y_label = 'Y'
if ' vs ' in data_description:
parts = data_description.split(' vs ')
if len(parts) == 2:
x_label = parts[0].strip().capitalize()
y_label = parts[1].strip().capitalize()
df.columns = [x_label, y_label]
else:
# Default fallback
df = pd.DataFrame({
'X': range(1, 11),
'Y': np.random.randint(1, 100, 10)
})
return df |